Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Daily images of ice cover in the Arctic Ocean (left) and around Antarctica reveal sea ice formation and melting at the poles over the course of two years (Sept 14, 2023 to Sept. 13, 2025).Trent Schindler/NASA’s Scientific Visualization Studio With the end of summer approaching in the Northern Hemisphere, the extent of sea ice in the Arctic shrank to its annual minimum on Sept. 10, according to NASA and the National Snow and Ice Data Center. The total sea ice coverage was tied with 2008 for the 10th-lowest on record at 1.78 million square miles (4.60 million square kilometers). In the Southern Hemisphere, where winter is ending, Antarctic ice is still accumulating but remains relatively low compared to ice levels recorded before 2016.
      The areas of ice covering the oceans at the poles fluctuate through the seasons. Ice accumulates as seawater freezes during colder months and melts away during the warmer months. But the ice never quite disappears entirely at the poles. In the Arctic Ocean, the area the ice covers typically reaches its yearly minimum in September. Since scientists at NASA and the National Oceanic and Atmospheric Administration (NOAA) began tracking sea ice at the poles in 1978, sea ice extent has generally been declining as global temperatures have risen. 
      “While this year’s Arctic sea ice area did not set a record low, it’s consistent with the downward trend,” said Nathan Kurtz, chief of the Cryospheric Sciences Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      Arctic ice reached its lowest recorded extent in 2012. Ice scientist Walt Meier of the National Snow and Ice Data Center at the University of Colorado, Boulder, attributes that record low to a combination of a warming atmosphere and unusual weather patterns. This year, the annual decline in ice initially resembled the changes in 2012. Although the melting tapered off in early August, it wasn’t enough to change the year-over-year downward trend. “For the past 19 years, the minimum ice coverage in the Arctic Ocean has fallen below the levels prior to 2007,” Meier said. “That continues in 2025.” 
      Antarctic sea ice nearing annual maximum
      As ice in the Arctic reaches its annual minimum, sea ice around the Antarctic is approaching its annual maximum. Until recently, ice in the ocean around the Southern pole has been more resilient than sea ice in the North, with maximum coverage increasing slightly in the years before 2015. “This year looks lower than average,” Kurtz said. “But the Antarctic system as a whole is more complicated,” which makes predicting and understanding sea ice trends in the Antarctic more difficult. 
      It’s not yet clear whether lower ice coverage in the Antarctic will persist, Meier said. “For now, we’re keeping an eye on it” to see if the lower sea ice levels around the South Pole are here to stay or only part of a passing phase. 
      A history of tracking global ice 
      For nearly five decades, NASA and NOAA have relied on a variety of satellites to build a continuous sea ice record, beginning with the NASA Nimbus-7 satellite (1978–1987) and continuing with the Special Sensor Microwave/Imager and the Special Sensor Microwave Imager Sounder on Defense Meteorological Satellite Program satellites that began in 1987. The Advanced Microwave Scanning Radiometer–for EOS on NASA’s Aqua satellite also contributed data from 2002 to 2011. Scientists have extended data collection with the 2012 launch of the Advanced Microwave Scanning Radiometer 2 aboard a JAXA (Japan Aerospace Exploration Agency) satellite.
      With the launch of ICESat-2 in 2018, NASA has added the continuous observation of ice thickness to its recording. The ICESat-2 satellite measures ice height by recording the time it takes for laser light from the satellite to reflect from the surface and travel back to detectors on board.
      “We’ve hit 47 years of continuous monitoring of the global sea ice extent from satellites,” said Angela Bliss, assistant chief of NASA’s Cryospheric Sciences Laboratory. “This data record is one of the longest, most consistent satellite data records in existence, where every single day we have a look at the sea ice in the Arctic and the Antarctic.”
      By James Riordon
      NASA Goddard Space Flight Center
      Media contact: Elizabeth Vlock
      NASA Headquarters
      Share
      Details
      Last Updated Sep 17, 2025 LocationNASA Goddard Space Flight Center Related Terms
      Earth Goddard Space Flight Center Ice & Glaciers ICESat-2 (Ice, Cloud and land Elevation Satellite-2) Explore More
      5 min read Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline
      Article 1 year ago 4 min read Cool Ways of Studying the Cryosphere
      One of the key elements of Earth’s climate system is the cryosphere – the many…
      Article 7 years ago 7 min read Earth’s cryosphere is vital for everyone. Here’s how NASA keeps track of its changes.
      Article 4 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Amazing Space
      Tonight Only! Hidden Details on the Moon You Never Noticed
    • By NASA
      CSA (Canadian Space Agency) astronaut Jeremy Hansen, alongside NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch, will launch on the Artemis II mission early next year. The crew will participate in human research studies to provide insights about how the body performs in deep space as part of this mission. Credit: (NASA/James Blair) A sweeping collection of astronaut health studies planned for NASA’s Artemis II mission around the Moon will soon provide agency researchers with a glimpse into how deep space travel influences the human body, mind, and behavior.
      During an approximately 10-day mission set to launch in 2026, NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will collect and store their saliva, don wrist monitors that track movement and sleep, and offer other essential data for NASA’s Human Research Program and other agency science teams. 
      “The findings are expected to provide vital insights for future missions to destinations beyond low Earth orbit, including Mars,” said Laurie Abadie, an aerospace engineer for the program at NASA’s Johnson Space Center in Houston, who strategizes about how to carry out studies on Artemis missions. “The lessons we learn from this crew will help us to more safely accomplish deep space missions and research,” she said.
      One study on the Artemis II mission, titled Immune Biomarkers, will explore how the immune system reacts to spaceflight. Another study, ARCHeR (Artemis Research for Crew Health and Readiness), will evaluate how crew members perform individually and as a team throughout the mission, including how easily they can move around within the confined space of their Orion spacecraft. Astronauts also will collect a standardized set of measurements spanning multiple physiological systems to provide a comprehensive snapshot of how spaceflight affects the human body as part of a third study called Artemis II Standard Measures. What’s more, radiation sensors placed inside the Orion capsule cells will collect additional information about radiation shielding functionality and organ-on-a-chip devices containing astronaut cells will study how deep space travel affects humans at a cellular level.
      “Artemis missions present unique opportunities, and challenges, for scientific research,” said Steven Platts, chief scientist for human research at NASA Johnson.
      Platts explained the mission will need to protect against challenges including exposure to higher radiation levels than on the International Space Station, since the crew will be farther from Earth.
      “Together, these studies will allow scientists to better understand how the immune system performs in deep space, teach us more about astronauts’ overall well-being ahead of a Mars mission, and help scientists develop ways to ensure the health and success of crew members,” he said.
      Another challenge is the relatively small quarters. The habitable volume inside Orion is about the size of a studio apartment, whereas the space station is larger than a six-bedroom house with six sleeping quarters, two bathrooms, a gym, and a 360-degree view bay window. That limitation affects everything from exercise equipment selection to how to store saliva samples.
      Previous research has shown that spaceflight missions can weaken the immune system, reactivate dormant viruses in astronauts, and put the health of the crew at risk. Saliva samples from space-based missions have enabled scientists to assess various viruses, hormones, and proteins that reveal how well the immune system works throughout the mission.
      But refrigeration to store such samples will not be an option on this mission due to limited space. Instead, for the Immune Biomarkers study, crew members will supply liquid saliva on Earth and dry saliva samples in space and on Earth to assess changes over time. The dry sample process involves blotting saliva onto special paper that’s stored in pocket-sized booklets.
      “We store the samples in dry conditions before rehydrating and reconstituting them,” said Brian Crucian, an immunologist with NASA Johnson who’s leading the study. After landing, those samples will be analyzed by agency researchers.
      For the ARCHeR study, participating crew members will wear movement and sleep monitors, called actigraphy devices, before, during, and after the mission. The monitors will enable crew members and flight controllers in mission control to study real-time health and behavioral information for crew safety, and help scientists study how crew members’ sleep and activity patterns affect overall health and performance. Other data related to cognition, behavior, and team dynamics will also be gathered before and after the mission.
      “Artemis missions will be the farthest NASA astronauts have ventured into space since the Apollo era,” said Suzanne Bell, a NASA psychologist based at Johnson who is leading the investigation. “The study will help clarify key mission challenges, how astronauts work as a team and with mission control, and the usability of the new space vehicle system.” 
      Another human research study, Artemis II Standard Measures, will involve collecting survey and biological data before, during, and after the Artemis II mission, though blood collection will only occur before and after the mission. Collecting dry saliva samples, conducting psychological assessments, and testing head, eye, and body movements will also be part of the work. In addition, tasks will include exiting a capsule and conducting simulated moonwalk activities in a pressurized spacesuit shortly after return to Earth to investigate how quickly astronauts recover their sense of balance following a mission.
      Crew members will provide data for these Artemis II health studies beginning about six months before the mission and extending for about a month after they return to Earth.
      NASA also plans to use the Artemis II mission to help scientists characterize the radiation environment in deep space. Several CubeSats, shoe-box sized satellites that will be deployed into high-Earth orbit during Orion’s transit to the Moon, will probe the near-Earth and deep space radiation environment. Data gathered by these CubeSats will help scientists understand how best to shield crew and equipment from harmful space radiation at various distances from Earth.
      Crew members will also keep dosimeters in their pockets that measure radiation exposure in real time. Two additional radiation-sensing technologies will also be affixed to the inside of the Orion spacecraft. One type of device will monitor the radiation environment at different shielding locations and alert crew if they need to seek shelter, such as during a solar storm. A separate collection of four radiation monitors, enabled through a partnership with the German Space Agency DLR, will be placed at various points around the cabin by the crew after launch to gather further information.
      Other technologies also positioned inside the spacecraft will gather information about the potential biological effects of the deep space radiation environment. These will include devices called organ chips that house human cells derived from the Artemis II astronauts, through a project called AVATAR (A Virtual Astronaut Tissue Analog Response). After the Artemis II lands, scientists will analyze how these organ chips responded to deep space radiation and microgravity on a cellular level.
      Together, the insights from all the human research science collected through this mission will help keep future crews safe as humanity extends missions to the Moon and ventures onward to Mars.
      ____
      NASA’s Human Research Program
      NASA’s Human Research Program pursues methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, the International Space Station and Artemis missions, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives the program’s quest to innovate ways that keep astronauts healthy and mission ready as human space exploration expands to the Moon, Mars, and beyond.
      Explore More
      9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
      Article 20 hours ago 5 min read NASA’s Northrop Grumman CRS-23 Infographics & Hardware
      Article 20 hours ago 4 min read NASA Uses Colorado Mountains for Simulated Artemis Moon Landing Course
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, complete the signing of a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025NASA/Mark Knopp As NASA inspires the world through discovery in a new era of innovation and exploration, NASA’s Langley Research Center in Hampton, Virginia, and Embry-Riddle Aeronautical University are working together to advance research, educational opportunities, and workforce development to enable the next generation of aerospace breakthroughs.
      The collaborative work will happen through a Space Act Agreement NASA Langley and Embry-Riddle signed during a ceremony held Thursday at NASA Langley. The agreement will leverage NASA Langley’s aerospace expertise and Embry-Riddle’s specialized educational programs and research to drive innovation in aerospace, research, education, and technology, while simultaneously developing a highly skilled workforce for the future of space exploration and advanced air mobility.
      Dr. Trina Marsh Dyal, NASA Langley’s acting center director, and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle, presided over the ceremony.
      “NASA Langley values opportunities to partner with colleges and universities on research and technology demonstrations that lay the foundation for tomorrow’s innovations,” said Dyal. “These collaborations play an essential role in advancing aeronautics, space exploration, and science initiatives that benefit NASA, industry, academia, and the nation.”
      In addition to forging a formal partnership between NASA Langley and Embry-Riddle, the agreement lays the framework to support Embry-Riddle’s development of an Augmented Reality tool by using NASA sensor technology and data. Augmented Reality uses computer-generated elements to enhance a user’s real-world environment and can help users better visualize data. Incorporating model and lunar landing data from Navigation Doppler Lidar, a technology developed at NASA Langley, this tool will enhance visualization and training for entry, descent, and landing, and deorbit, descent, and landing systems — advancing our capabilities for future Moon and Mars missions.
      NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, sign a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025.NASA/Mark Knopp “As we work to push the boundaries of what is possible and solve the complexities of a sustained human presence on the lunar surface and Mars, this partnership with Embry-Riddle will not only support NASA’s exploration goals but will also ensure the future workforce is equipped to maintain our nation’s aerospace leadership,” Dyal said.
      Embry-Riddle educates more than 30,000 students through its residential campuses in Daytona Beach, Florida, and Prescott, Arizona, and through online programs offered by its
      Worldwide Campus, which counts more than 100 locations across the globe, including a site at Naval Station Norfolk in Virginia.
      “We are thrilled that this partnership with NASA Langley is making it possible for our faculty, students, and staff to engage with NASA talent and collaborate on cutting-edge aerospace applications and technology,” said Ernst. “This partnership also presents an incredible opportunity for our students to augment direct research experiences, enhancing career readiness as they prepare to take on the aerospace challenges of tomorrow.”
      NASA is committed to partnering with a wide variety of domestic and international partners, in academia, industry, and across the government, to successfully accomplish its diverse missions, including NASA’s Artemis campaign which will return astronauts to the Moon and help pave the way for future human missions to Mars.
      For more information on programs at NASA Langley, visit:

      https://nasa.gov/langley

      Brittny McGraw
      NASA Langley Research Center
      Share
      Details
      Last Updated Sep 11, 2025 Related Terms
      Langley Research Center Explore More
      4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago 4 min read Strap In! NASA Aeroshell Material Takes Extended Space Trip
      Article 2 weeks ago 4 min read Washington State Student Wins 2025 NASA Art Contest
      Article 2 weeks ago View the full article
    • By Amazing Space
      BLOOD MOON TONIGHT! Total Lunar Eclipse September 7, 2025 + 5 Amazing Moon Features You Can See!
  • Check out these Videos

×
×
  • Create New...