Members Can Post Anonymously On This Site
A Small Business Success Story: Mentor-Protégé Agreements Drive Growth in Aerospace Sector
-
Similar Topics
-
By NASA
Lindy Garay always knew she wanted to develop software. She did not anticipate that her work would contribute to human spaceflight.
The electrical and software engineering degree Garay earned from the University of Texas at Austin paved the way for a 25-year career with NASA’s Johnson Space Center in Houston. Her first job out of college was developing software for the International Space Station Program’s original space station training facility simulator. “I had not always been interested in working in the space program, but I became enamored with being able to contribute to such an important mission,” she said.
Official portrait of Lindy Garay.NASA Today, Garay serves as a training systems software architect and is the technical lead for training system external interfaces. That means she leads the team that helps connect training simulations from NASA’s external partners with simulations run by Johnson’s Mission Training Center (MTC) to support crew and flight controller training. The MTC currently provides training capabilities for the International Space Station Program, the Commercial Crew Program, and Artemis campaign components such as the Orion Program and the human landing system.
Garay said that not having an aerospace background was challenging at the beginning of her career, but she overcame that by leaning on teammates who had knowledge and experience in the field. “Every successful endeavor depends on having a solid team of dedicated people working toward one goal,” she said. “Success also depends on good communication, flexibility, and being willing to listen to different opinions,” she added.
Garay was recently named as a 2025 NASA Space Flight Awareness Program Honoree – one of the highest recognitions presented to the agency’s workforce. Recipients must have significantly contributed to the human spaceflight program to ensure flight safety and mission success. Garay’s commendation acknowledged her “sustained superior performance, dedication, and commitment to the Flight Operations Directorate’s goals” and her instrumental role in the success of several major training systems projects. In particular, she was recognized for contributions to the High-Level Architecture simulation framework, which is used to create realistic simulations of visiting vehicles’ arrival, docking, and departure from the space station.
From left to right, Johnson Space Flight Awareness (SFA) Lead Jessica Cordero, SFA Coordinator Michelle Minor, Johnson Space Center Acting Director Stephen Koerner, Drew Faulkner, Adam Korona, Teresa Sindelar, Lindy Garay, Lindsay Kirk, Keith Barr, Ephram Rubin, and NASA astronaut Randy Bresnik. NASA/Kim Shiflett Garay and 36 other agency honorees were celebrated during a special ceremony in Cocoa Beach, Florida, and had the opportunity to attend the launch of NASA’s SpaceX Crew-10 mission at NASA’s Kennedy Space Center. “That was quite an honor,” she said.
Outside of work, Garay may be found cheering on Houston’s sports teams. She enjoys traveling to watch the Texans and the Astros play.
Garay is also rooting for the Artemis Generation as NASA prepares to return to the Moon and journey on to Mars. She offered this advice: “Always remember the importance and the magnitude of the whole mission.”
Explore More
3 min read NASA Shares Final Contenders for Artemis II Moon Mascot Design Contest
Article 3 days ago 5 min read NASA’s Bennu Samples Reveal Complex Origins, Dramatic Transformation
Asteroid Bennu, sampled by NASA’s OSIRIS-REx mission in 2020, is a mixture of dust that…
Article 3 days ago 4 min read NASA’s Artemis II Lunar Science Operations to Inform Future Missions
While the Artemis II crew will be the first humans to test NASA’s Orion spacecraft…
Article 4 days ago View the full article
-
By NASA
NASA announced 10 winning teams for its latest TechLeap Prize — the Space Technology Payload Challenge — on June 26. The winners emerged from a record-breaking field of more than 200 applicants to earn cash prizes worth up to $500,000, if they have a flight-ready unit. Recipients may also have the opportunity to flight test their technologies.
NASA’s Biological and Physical Sciences (BPS) division is supporting the emerging space economy through challenges like TechLeap. The projects receive funding through the Commercially Enabled Rapid Space Science (CERISS) initiative, which pairs government research goals with commercial innovation.
Two awardees’ capabilities specifically address BPS research priorities, which include conducting investigations that inform future space crops and advance precision health.
Ambrosia Space Manufacturing Corporation is developing a centrifuge system to separate nutrients from cell cultures — potentially creating space-based food processing that could turn algae into digestible meals for astronauts.
Helogen Corporation is building an automated laboratory system that can run biological experiments without requiring astronaut involvement and may be able to transmit real-time data to researchers on Earth without having to wait for physical samples to return.
“The innovations of these small- and midsize businesses could enable NASA to accelerate the pace of critical research,” says Dan Walsh, BPS’s program executive for CERISS. “It’s also an example of NASA enabling the emerging space industry to grow and thrive beyond big corporations.”
Small Packages with Big Ambitions
Every inch and ounce counts on a spacecraft, which means the winning teams have to think small while solving big problems.
Commercial companies play a pivotal role in enabling space-based research — they bring fresh approaches to ongoing challenges. But space missions demand a different kind of innovation, and TechLeap teams face both time and size constraints for their experiments.
Winners have six to nine months to demonstrate that their concepts work. That’s a significant contrast from traditional space technology development, which can stretch for years.
The research serves a larger purpose as well. The technology helps NASA “know before we go” on longer, deep-space missions to the Moon and Mars. Understanding how technologies behave in microgravity or extreme environments can prevent costly failures when astronauts are far from Earth.
Small investments in proof-of-concept technologies can bring in a high ROI. With the TechLeap Prize, BPS is betting that big ideas will come in small packages.
Related Resources
TechLeap Prize – Space Technology Payload Challenge (STPC)
Space Technology Payload Challenge Winners
Commercially Enabled Rapid Space Science Initiative
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Curiosity Blog, Sols 4586-4587: Straight Drive, Strategic Science
NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera on June 28, 2025 — Sol 4583, or Martian day 4,583 of the Mars Science Laboratory mission — at 03:20:22 UTC. NASA/JPL-Caltech Written by Scott VanBommel, Planetary Scientist at Washington University in St. Louis
Earth planning date: Monday, June 30, 2025
Our weekend drive placed Curiosity exactly where we had hoped: on lighter-toned, resistant bedrock we have been eyeing for close study. Curiosity’s workspace tosol did not contain any targets suitable for DRT. After a detailed discussion by the team, weighing science not only in tosol’s plan but the holiday-shifted sols ahead, the decision was made to perform contact science at the current workspace and then drive in the second sol of the plan.
Normally, drives in the second sol of a two-sol plan are uncommon, as we require information on the ground to assess in advance of the next sol’s planning. At present however, the current “Mars time” is quite favorable, enabling Curiosity’s team to operate within “nominal sols” and receive the necessary data in time for Wednesday’s one-sol plan. DAN kicked off the first sol of the plan with a passive measurement, complemented by another in the afternoon and two more on the second sol. Arm activities focused on placing MAHLI and APXS on “La Paz” and “Playa Agua de Luna,” two lighter-toned, laminated rocks.
The rest of the first sol was rounded out with ChemCam LIBS analyses on “La Joya” followed by further LIBS analyses on “La Vega” on the second sol, once Curiosity’s arm was out of the way of the laser. ChemCam and Mastcam additionally imaged “Mishe Mokwa” prior to the nearly straight drive of about 20 meters (about 66 feet). Environmental monitoring activities, imaging of the CheMin inlet cover, and a SAM EBT activity rounded out Curiosity’s efforts on the second sol.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jul 01, 2025 Related Terms
Blogs Explore More
3 min read An Update From the 2025 Mars 2020 Science Team Meeting
Article
2 hours ago
2 min read Curiosity Blog, Sols 4584–4585: Just a Small Bump
Article
1 day ago
4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Curiosity Blog, Sols 4584 – 4585: Just a Small Bump
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on June 27, 2025 — Sol 4582, or Martian day 4,582 of the Mars Science Laboratory mission — at 05:28:57 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
Earth planning date: Friday, June 27, 2025
We weren’t able to unstow Curiosity’s robotic arm on Wednesday because of some potentially unstable rocks under Curiosity’s wheels, but we liked the rocks at Wednesday’s location enough that we decided to spend a sol repositioning the rover so that we’d have another chance today to analyze them. The small adjustment of the rover’s position, or “bump,” as we like to call it during tactical planning, was successful, and we found ourselves in a nice stable pose this morning which allowed us to use our highly capable robotic arm to observe the rocks in front of us.
We will be collecting APXS and MAHLI observations of two targets today. The first, “Santa Elena,” is the bumpy rock that caught our eye on Wednesday. The second, informally named “Estancia Allkamari,” is a patch of nearby sand. We’ll analyze this target to understand if and how the sand composition has changed as we’ve driven across Mount Sharp, and to better help us understand how sand may be contributing to future compositional measurements that cover mixtures of sand and rock. MAHLI and ChemCam will team up to observe a third target named “Ticatica,” which is another bumpy rock nearby that looks like it might have a dark patch on its side.
This is the final weekend of this Martian year when temperature and relative humidity in Gale crater hit the sweet spot where conditions are right for frost to form in the pre-dawn hours. We’re taking this last opportunity to see if we can catch any evidence of frost with the ChemCam laser, shooting a sandy (and hopefully cold) portion of the ground in the pre-dawn hours on a target named “Rio Huasco.” Other activities in the plan include atmospheric monitoring, Mastcam mosaics, including a 20 x 3 mosaic of the large boxwork structures in the distance, and a short drive to the southwest to check out a rocky raised ridge.
For more Curiosity blog posts, visit MSL Mission Updates
Learn more about Curiosity’s science instruments
Share
Details
Last Updated Jul 01, 2025 Related Terms
Blogs Explore More
4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch
Article
3 days ago
2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…
Article
5 days ago
2 min read Clay Minerals From Mars’ Most Ancient Past?
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By Space Force
Ahead of the movie's theatrical release, Disney/Pixar invited military families to special screenings across the country, including at an event hosted by the Motion Picture Association in Washington, D.C.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.