Members Can Post Anonymously On This Site
60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
-
Similar Topics
-
By NASA
Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read Another First: NASA Webb Identifies Frozen Water in Young Star System
For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. The full artist’s concept illustration and full caption is shown below. Credits:
NASA, ESA, CSA, Ralf Crawford (STScI) Is frozen water scattered in systems around other stars? Astronomers have long expected it is, partially based on previous detections of its gaseous form, water vapor, and its presence in our own solar system.
Now there is definitive evidence: Researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star 155 light-years away using detailed data known as spectra from NASA’s James Webb Space Telescope. (The term water ice specifies its makeup, since many other frozen molecules are also observed in space, such as carbon dioxide ice, or “dry ice.”) In 2008, data from NASA’s retired Spitzer Space Telescope hinted at the possibility of frozen water in this system.
“Webb unambiguously detected not just water ice, but crystalline water ice, which is also found in locations like Saturn’s rings and icy bodies in our solar system’s Kuiper Belt,” said Chen Xie, the lead author of the new paper and an assistant research scientist at Johns Hopkins University in Baltimore, Maryland.
All the frozen water Webb detected is paired with fine dust particles throughout the disk — like itsy-bitsy “dirty snowballs.” The results published Wednesday in the journal Nature.
Astronomers have been waiting for this definitive data for decades. “When I was a graduate student 25 years ago, my advisor told me there should be ice in debris disks, but prior to Webb, we didn’t have instruments sensitive enough to make these observations,” said Christine Chen, a co-author and associate astronomer at the Space Telescope Science Institute in Baltimore. “What’s most striking is that this data looks similar to the telescope’s other recent observations of Kuiper Belt objects in our own solar system.”
Water ice is a vital ingredient in disks around young stars — it heavily influences the formation of giant planets and may also be delivered by small bodies like comets and asteroids to fully formed rocky planets. Now that researchers have detected water ice with Webb, they have opened the door for all researchers to study how these processes play out in new ways in many other planetary systems.
Image: Debris Disk Around Star HD 181327 (Artist’s Concept)
For the first time, researchers confirmed the presence of crystalline water ice in a dusty debris disk that orbits a Sun-like star, using NASA’s James Webb Space Telescope. All the frozen water detected by Webb is paired with fine dust particles throughout the disk. The majority of the water ice observed is found where it’s coldest and farthest from the star. The closer to the star the researchers looked, the less water ice they found. NASA, ESA, CSA, Ralf Crawford (STScI) Rocks, Dust, Ice Rushing Around
The star, cataloged HD 181327, is significantly younger than our Sun. It’s estimated to be 23 million years old, compared to the Sun’s more mature 4.6 billion years. The star is slightly more massive than the Sun, and it’s hotter, which led to the formation of a slightly larger system around it.
Webb’s observations confirm a significant gap between the star and its debris disk — a wide area that is free of dust. Farther out, its debris disk is similar to our solar system’s Kuiper Belt, where dwarf planets, comets, and other bits of ice and rock are found (and sometimes collide with one another). Billions of years ago, our Kuiper Belt was likely similar to this star’s debris disk.
“HD 181327 is a very active system,” Chen said. “There are regular, ongoing collisions in its debris disk. When those icy bodies collide, they release tiny particles of dusty water ice that are perfectly sized for Webb to detect.”
Frozen Water — Almost Everywhere
Water ice isn’t spread evenly throughout this system. The majority is found where it’s coldest and farthest from the star. “The outer area of the debris disk consists of over 20% water ice,” Xie said.
The closer in the researchers looked, the less water ice they found. Toward the middle of the debris disk, Webb detected about 8% water ice. Here, it’s likely that frozen water particles are produced slightly faster than they are destroyed. In the area of the debris disk closest to the star, Webb detected almost none. It’s likely that the star’s ultraviolet light vaporizes the closest specks of water ice. It’s also possible that rocks known as planetesimals have “locked up” frozen water in their interiors, which Webb can’t detect.
This team and many more researchers will continue to search for — and study — water ice in debris disks and actively forming planetary systems throughout our Milky Way galaxy. “The presence of water ice helps facilitate planet formation,” Xie said. “Icy materials may also ultimately be ‘delivered’ to terrestrial planets that may form over a couple hundred million years in systems like this.”
The researchers observed HD 181327 with Webb’s NIRSpec (Near-Infrared Spectrograph), which is super-sensitive to extremely faint dust particles that can only be detected from space.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
Downloads
Click any image to open a larger version.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from the journal Nature.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Claire Blome – cblome@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
View Webb images of other debris disks around Vega, Fomalhaut, Beta Pictoris, and AU Microscopii
Learn more about spectroscopy
Read more: Webb’s Near-infrared Spectrograph (NIRSpec)
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Stars Stories
Universe
Share
Details
Last Updated May 14, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Science & Research Stars The Universe View the full article
-
By NASA
NASA Glenn Research Center senior materials research engineer Kim de Groh, who conducted research for Hubble Space Telescope servicing missions, shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Dennis Brown April 24 marked the 35th anniversary of the launch of NASA’s Hubble Space Telescope. The iconic space observatory remains a household name —the most well-recognized and scientifically productive telescope in history. Engineers at NASA’s Glenn Research Center in Cleveland played a significant role in how the telescope functions today.
NASA’s Glenn Research Center researchers Kim de Groh, left, and Joyce Dever conducted research for Hubble Space Telescope servicing missions. De Groh shared her experiences during a presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on Thursday, May 8, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn researchers assisted in all five Hubble servicing missions by testing damaged insulation, determining why it degraded in space, and recommending replacement materials.
One of those researchers, Kim de Groh, senior materials research engineer, shared some of that research in a special presentation at Great Lakes Science Center, home of the NASA Glenn Visitor Center, in Cleveland on May 8. She chronicled her Hubble experience with a presentation, a show-and-tell with samples directly from the telescope, and a Q&A addressing the audience’s Hubble-related questions.
Return to Newsletter Explore More
1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available
Article 1 min ago 1 min read NASA Glenn Shows Students Temperature-Cooling Technology
Article 2 mins ago View the full article
-
By NASA
NASA Glenn Research Center’s Director Dr. Jimmy Kenyon, left, talks with a Youth Tech Academy Red Dragon participant at the FIRST Robotics Competition Buckeye Regional in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna NASA’s Glenn Research Center in Cleveland supported the 26th annual FIRST Robotics Competition Buckeye Regional, April 3-6, at Cleveland State University’s Wolstein Center. This international engineering design challenge combines the excitement of sports with the rigors of STEM.
Mavericks Team participants adjust their robot prior to their turn to compete at the FIRST Robotics Competition Buckeye Regional in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn Center Director Dr. Jimmy Kenyon helped kick off this year’s event by addressing the student participants. He shared that NASA Glenn specializes in propulsion and communications, that the center is vital to the region and country, and that “the road to Moon and Mars goes through Ohio” thanks to the center’s contributions to the agency’s missions. He also highlighted several aerospace projects underway at the center and explained how engineering and math skills used in robotics apply to real-life engineering challenges.
Fifty-six teams of high school students competed in the robotics competition, which aims to inspire young people to be STEM leaders and innovators by engaging them in mentor-based engineering.
Members from the Argonauts Team cheer as their robot competes in the FIRST Robotics Competition Buckeye Regional at Cleveland State University in Cleveland on Friday, April 4, 2025. Credit: NASA/Sara Lowthian-Hanna NASA Glenn employees offered their time and expertise as mentors, machinists, or volunteers supporting FIRST Robotics teams leading up to the event as well as on competition day.
Return to Newsletter Explore More
1 min read NASA Glenn Engineer Highlights Research for Hubble Servicing Missions
Article 21 seconds ago 1 min read NASA Glenn Hosts Slovenian Delegation and Ohio Governor’s Office
Article 48 seconds ago 1 min read Specialty NASA Glenn License Plates Available
Article 1 min ago View the full article
-
By NASA
As NASA partners with American industry to deliver science and technology payloads to the Moon, a dedicated team behind the scenes ensures every mission is grounded in strategy, compliance, and innovation. Leading that effort is Aubrie Henspeter, who advises all aspects of procurement for NASA’s Commercial Lunar Payload Services (CLPS) initiative—one of the cornerstone projects supporting the Artemis campaign.
Official portrait of Aubrie Henspeter. NASA/Bill Stafford With 20 years at NASA, Henspeter brings multifaceted experience to her role as CLPS procurement team lead in the Lunar & Planetary Exploration Procurement Office at Johnson Space Center in Houston. Her job is equal parts problem-solving, mentoring, and strategizing—all focused on enabling commercial partners to deliver NASA payloads to the lunar surface faster, more affordably, and more efficient than ever before.
“It’s been a great experience to see the full lifecycle of a project—from soliciting requirements to launching to the Moon,” said Henspeter. “We work to continuously adjust as the lunar industry grows and improve procurement terms and conditions by incorporating lessons learned.”
Henspeter leads a team of six contracting officers and contract specialists, managing workload priorities and supporting the continuity of seven commercial missions currently on contract. She also helps shape upcoming contract opportunities for future lunar deliveries, constantly seeking creative procurement strategies within a commercial firm-fixed-price framework.
NASA launched the CLPS initiative in 2018 to create a faster, more flexible way to partner with commercial companies for lunar deliveries. Thirteen vendors are participating as part of a multi-award contract, each eligible to compete for individual task orders to deliver NASA science and technology payloads to the Moon. These deliveries support Artemis goals by enabling new discoveries, testing key technologies, and preparing for long-term human exploration on the lunar surface.
Aubrie Henspeter receives the 2023 JSC Director’s Commendation Award from NASA Acting Associate Administrator Vanessa Wyche, right, and Johnson Space Center’s Acting Director Steve Koerner, far left, joined by her sons Elijah and Malik Merrick.NASA/James Blair In May 2023, Henspeter received the NASA Exceptional Service Medal for her leadership on CLPS from 2018–2023. For her, the recognition reflects the team’s spirit and collaboration.
“I genuinely enjoy working on this project because of its lean, adaptable approach and the amazing team involved,” she said. “When all of us across NASA work together we are the most successful and can achieve our mission.”
That sense of collaboration and adaptability has shaped many of the insights Henspeter has gained throughout her career—lessons she now applies daily to help the team stay aligned and prepared.
One of those key lessons: always keep the contract current.
“It’s all good until it isn’t, and then everyone asks—what does the contract say?” she said. “Open communication and up-to-date documentation, no matter how minor the change, are essential.”
Over the course of her career, Henspeter has learned to prioritize preparation, adaptability, and strong working relationships.
“Preparation in procurement is conducting thorough market research, understanding the regulations, finding the gray areas, and developing a strategy that best meets the customer’s needs,” she said. “Adaptability means staying committed to the goal while remaining open and flexible on how to get there.”
That philosophy has helped her navigate everything from yearlong international contract negotiations with foreign partners to pivoting a customer from a sole-source request to a competitive procurement that ultimately saved costs and expanded opportunity.
“NASA is full of brilliant people, and it can be challenging to present alternatives. But through clear communication and data-driven recommendations, we find solutions that work,” Henspeter said.
NASA’s Commercial Lunar Payload Services (CLPS) team members at Kennedy Space Center in Florida for the launch of Firefly’s Blue Ghost Mission 1, including Aubrie Henspeter (second from left) and teammates Joshua Smith, LaToya Eaglin, Catherine Staggs, Shayla Martin, Tasha Beasley, Jennifer Ariens, Derek Maggard, and guests. As she looks to the Artemis Generation, Henspeter hopes to pass along a deep respect for teamwork and shared purpose.
“Every contribution matters. Whether it seems big or small, it makes a difference in achieving our mission,” she said. “I take pride in my role and in being part of the NASA team.”
Explore More
2 min read NASA Expands Youth Engagement With New Scouting America Agreement
Article 6 days ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
Article 7 days ago 5 min read Nilufar Ramji: Shaping Johnson’s Giant Leaps Forward
Article 1 week ago View the full article
-
By NASA
NASA/Charles Beason Students from the University of Massachusetts Amherst team carry their high-powered rocket toward the launch pad at NASA’s 2025 Student Launch launch day competition in Toney, Alabama, on April 4, 2025. More than 980 middle school, high school, and college students from across the nation launched more than 40 high-powered amateur rockets just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. This year marked the 25th anniversary of the competition.
To compete, students follow the NASA engineering design lifecycle by going through a series of reviews for nine months leading up to launch day. Each year, a payload challenge is issued to the university teams, and this year’s task focused on communication. Teams were required to have “reports” from STEMnauts, non-living objects inside their rocket, that had to relay real-time data to the student team’s mission control. This Artemis Student Challenge took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars.
See highlights from the 2025 Student Launch.
Text credit: NASA/Janet Sudnik
Image credit: NASA/Charles Beason
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.