Jump to content

Weird sky phenomenon: Lightning bounces off a mysterious dome over Australia?


Recommended Posts

Posted
Over the years, numerous mysterious events have been witnessed in the sky, defying explanation. Recently, yet another unusual sky phenomenon was observed over Southern Australia capturing attention and sparking curiosity. 

sky%20phenomenon%20lightning%20dome%20Australia%20(1).jpg

Video footage reveals what appears to be a dome-shaped structure, with an even stranger detail: lightning seems to bounce off or perhaps even originate from within the dome. 

The mysterious formation has led to numerous theories. Some viewers suggest it could be a unique (red) rainbow or a rare weather event like a haboob (sandstorm). Others speculate it might be the result of weather manipulation or even an energy field projected over the region. 

sky%20phenomenon%20lightning%20dome%20Australia%20(2).jpg

Opinions also vary on the lightning, some say it’s bouncing off the dome, while others believe it could be emanating from within. Although it may just be an unusual natural phenomenon, the seemly strange interaction with the lightning remains unexplained.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Part of the Gibson Desert in Western Australia is featured in this image, captured by the Φsat-2 mission in June 2025. View the full article
    • By NASA
      Flight Engineer Joe Acaba works in the U.S. Destiny laboratory module on the International Space Station, setting up hardware for the Zero Boil-Off Tank (ZBOT) experiment. Joe Acaba Space missions rely on cryogenic fluids — extremely cold liquids like liquid hydrogen and oxygen — for both propulsion and life support systems. These fuels must be kept at ultra-low cryogenic temperatures to remain in liquid form; however, solar heating and other sources of heat increase the rate of evaporation of the liquid and cause the pressure in the storage tank to increase. Current storage methods require venting the cryogenic propellant to space to control the pressure in fuel tanks.
      NASA’s Zero Boil-Off Tank Noncondensables (ZBOT-NC) experiment is the continuation of Zero Boil-Off studies gathering crucial data to optimize fuel storage systems for space missions. The experiment will launch aboard Northrop Grumman’s 23rd resupply mission to the International Space Station.
      When Cold Fuel Gets Too Warm
      Even with multilayer insulation, heat unavoidably seeps into cryogenic fuel tanks from surrounding structures and the space environment, causing an increase in the liquid temperature and an associated increase in the evaporation rate. In turn, the pressure inside the tank increases. This process is called “boil-off” and the increase in tank pressure is referred to as “self-pressurization.”
      Venting excess gas to the environment or space when this process occurs is highly undesirable and becomes mission-critical on extended journeys. If crew members used current fuel storage methods for a years-long Mars expedition, all propellant might be lost to boil-off before the trip ends.
      NASA’s ZBOT experiments are investigating active pressure control methods to eliminate wasteful fuel venting. Specifically, active control through the use of jet mixing and other techniques are being evaluated and tested in the ZBOT series of experiments.
      The Pressure Control Problem
      ZBOT-NC further studies how noncondensable gases (NCGs) affect fuel tank behavior when present in spacecraft systems. NCGs don’t turn into liquid under the tank’s operating conditions and can affect tank pressure.
      The investigation, which is led out of Glenn Research Center, will operate inside the Microgravity Science Glovebox aboard the space station to gather data on how NCGs affect volatile liquid behavior in microgravity. It’s part of an effort to advance cryogenic fluid management technologies and help NASA better understand low-gravity fluid behavior.
      Researchers will measure pressure and temperature as they study how these gases change evaporation and condensation rates. Previous studies indicate the gases create barriers that could reduce a tank’s ability to maintain proper pressure control — a potentially serious issue for extended space missions.
      How this benefits space exploration
      The research directly supports Mars missions and other long-duration space travel by helping engineers design more efficient fuel storage systems and future space depots. The findings may also benefit scientific instruments on space telescopes and probes that rely on cryogenic fluids to maintain the extremely low temperatures needed for operation.
      How this benefits humanity
      The investigation could improve tank design models for medical, industrial, and energy production applications that depend on long-term cryogenic storage on Earth.
      Latest Content
      Stay up-to-date with the latest content from NASA as we explore the universe and discover more about our home planet.


      Zero Boil-Off Tank Noncondensables (ZBOT-NC)
      2 min read Principal Investigator(s): Overview: Zero Boil-Off Tank Noncondensables (ZBOT-NC) investigates how noncondensable gases interfere with fuel storage systems in microgravity. The…
      Topic
      What Are Quasicrystals, and Why Does NASA Study Them?
      3 min read For 40 years, finding new quasicrystals has been like searching for four-leaf clovers in a field. You’re lucky if you…
      Topic
      Growing Beyond Earth®
      2 min read Learn More Growing Beyond Earth student teams have helped select 5 of the 20 species that have been tested as…
      Topic
      1

      2

      3
      Next
      Biological & Physical Sciences Division

      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home This image was taken when Perseverance topped Soroya ridge. Using the Left Navigation Camera (Navcam), the image was acquired on Aug. 17, 2025 (Sol 1597) at the local mean solar time of 13:54:37. NASA/JPL-Caltech Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
      Perseverance has continued exploring beyond the rim of Jezero crater, spending time last week at Parnasset conducting a mini-campaign on aeolian bedforms. After wrapping up that work, three separate drives brought Perseverance further southeast to an outcrop named Soroya.
      Soroya was first picked out from orbital images as a target of interest because, as can be seen in the above image, it appears as a much lighter color compared to the surroundings. In previous landscape images from the surface, Mars 2020 scientists have been able to pick out the light-toned Soryoa outcrop, and they noted it forms a ridge-like structure, protruding above the surface. Soroya was easily identifiable from rover images (below) as Perseverance approached since it indeed rises above the surrounding low-lying terrain.
      The Perseverance rover acquired this image looking at Soroya using the onboard Left Navigation Camera (Navcam). This image was acquired on Aug. 15, 2025 (Sol 1595) at the local mean solar time of 16:34:53. NASA/JPL-Caltech From Parnasset to Soroya, the team planned a series of drives so that Perseverance would arrive at Soroya in a great workspace, and the plan was successful. As shown in the first image, we arrived at  an area with flat, exposed bedrock –  great for proximity science instruments.
      The WATSON and SHERLOC ACI cameras plan to acquire many high-resolution images to investigate textures and surface features. For chemistry, SCAM LIBS and ZCAM multispectral activities will give important contextual data for the outcrop while PIXL will acquire a high-resolution chemical map scan of a dust-cleared part of the bedrock. While parked, MEDA will continue monitoring environmental conditions and ZCAM will image the surrounding terrain to inform the next drive location. Take a look at where Perseverance is now – where would you explore next?

      Want to read more posts from the Perseverance team?



      Visit Mission Updates


      Want to learn more about Perseverance’s science instruments?



      Visit the Science Instruments page


      Share








      Details
      Last Updated Aug 27, 2025 Related Terms
      Blogs Explore More
      3 min read Curiosity Blog, Sols 4638-4640: Imaging Extravaganza Atop a Ridge


      Article


      2 days ago
      3 min read To See the World in a Grain of Sand: Investigating Megaripples at ‘Kerrlaguna’


      Article


      6 days ago
      2 min read Curiosity Blog, Sols 4636-4637: Up Against a Wall


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Current Mars Investigations


      Current Mars Investigations The weather and climate of Mars are controlled by the coupled seasonal cycles of CO2, dust, and…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Image: This Copernicus Sentinel-3 image shows high concentrations of chlorophyll in yellow-green along the coastline of South Australia, near Adelaide. Chlorophyll-a is a key indicator of the presence of algae in the ocean. View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ResilienX employees Angelo Niforatos, left, and Ryan Pleskach, right, overview the NASA safety tools integrated into the company’s commercial system, July 11, 2025, at the ResilienX Headquarters in Syracuse, New York. Credit: ResilienX A future with advanced air mobility aircraft populating the skies will require the U.S. to implement enhanced preflight planning that can mitigate potential risks well before takeoff – and NASA is working to develop the tools to make that happen. 
      Preflight planning is critical to ensuring safety in the complex, high-risk environments of the future airspace. Timely, predictive, and up-to-date risk assessment within a single platform makes it much easier for drone or air taxi operators to check flight plans for high-risk concerns.  
      NASA is working on tools to deliver those services, and in June, the agency and aviation safety company ResilienX Inc. demonstrated how these tools can be integrated into commercial systems.  
      During a series of tests conducted at ResilienX’s facility in Syracuse, New York, researchers used NASA services that allowed flight operators to submit flight plans prior to departure, obtain risk assessment results, and then decide whether to proceed with flights or change their flight plans and re-assess risks. Allowing operators to perform these tasks quickly reduces the safety risk to flight passengers as well as humans on the ground. 
      The three NASA-developed services are intended to assess unique risks associated with highly automated aircraft flying at low altitudes over cities.  
      The partnership was managed under a Phase III NASA Small Business Innovation Research (SBIR) contract, which is an extension of prior work to assess weather-related risks. This collaboration is already leading to direct technology transfer of safety systems into ResilienX’s platform. The partnership is also intended to provide indirect benefits for ResilienX partners and customers, such as the U.S. Air Force and regional operators, helping to advance the overall safety of future airspace operations.  
      This work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission. The mission seeks to deliver data, findings, and recommendations to guide the industry’s development of future air taxis and drones. 
      Share
      Details
      Last Updated Aug 22, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Aeronautics Aeronautics Research Mission Directorate Airspace Operations and Safety Program Drones & You Small Business Innovation Research / Small Business System-Wide Safety Explore More
      5 min read National Aviation Day: Celebrating NASA’s Heritage While Charting Our Future
      Article 3 days ago 5 min read NASA Invites You to Celebrate National Aviation Day 2025
      Article 3 days ago 4 min read NASA Tests Research Aircraft to Improve Air Taxi Flight Controls
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...