Jump to content

Planets Beware: NASA Unburies Danger Zones of Star Cluster


Recommended Posts

  • Publishers
Posted
In the Cygnus OB2 star cluster, giant stars send out large amounts of high-energy radiation that can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets. These images show NASA's Chandra X-ray Observatory data detailing the diffuse X-ray emission and young stars, with infrared data from NASA's Spitzer Space Telescope revealing young stars and the cooler dust and gas throughout the region. These data were used to create the best census of young stars in the cluster.
X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk

Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.

A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.

The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.

The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.

In this new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.

In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.

Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between 5 and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.

The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.

For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect — meaning the worst place to be for a would-be planetary system — is within about 1.6 light-years of the most massive stars in the cluster.

A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.

Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.

NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.

Read more from NASA’s Chandra X-ray Observatory.

Learn more about the Chandra X-ray Observatory and its mission here:

https://www.nasa.gov/chandra

https://chandra.si.edu

Visual Description

This release features a composite image of the Cygnus OB2 star cluster, which resembles a night sky blanketed in orange, purple, and grey clouds.

The center of the square image is dominated by purple haze. This haze represents diffuse X-ray emissions, and young stars, detected by the Chandra X-ray observatory. Surrounding the purple haze is a mottled, streaky, brick orange cloud. Another cloud resembling a tendril of grey smoke stretches from our lower left to the center of the image. These clouds represent relatively cool dust and gas observed by the Spitzer Space Telescope.

Although the interwoven clouds cover most of the image, the thousands of stars within the cluster shine through. The lower-mass stars present as tiny specks of light. The massive stars gleam, some with long refraction spikes.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu

Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An unexpectedly strong solar storm rocked our planet on April 23, 2023, sparking auroras as far south as southern Texas in the U.S. and taking the world by surprise. 
      Two days earlier, the Sun blasted a coronal mass ejection (CME) — a cloud of energetic particles, magnetic fields, and solar material — toward Earth. Space scientists took notice, expecting it could cause disruptions to Earth’s magnetic field, known as a geomagnetic storm. But the CME wasn’t especially fast or massive, and it was preceded by a relatively weak solar flare, suggesting the storm would be minor. But it became severe.
      Using NASA heliophysics missions, new studies of this storm and others are helping scientists learn why some CMEs have more intense effects — and better predict the impacts of future solar eruptions on our lives.
      During the night of April 23 to 24, 2023, a geomagnetic storm produced auroras that were witnessed as far south as Arizona, Arkansas, and Texas in the U.S. This photo shows green aurora shimmering over Larimore, North Dakota, in the early morning of April 24. Copyright Elan Azriel, used with permission Why Was This Storm So Intense?
      A paper published in the Astrophysical Journal on March 31 suggests the CME’s orientation relative to Earth likely caused the April 2023 storm to become surprisingly strong.
      The researchers gathered observations from five heliophysics spacecraft across the inner solar system to study the CME in detail as it emerged from the Sun and traveled to Earth.
      They noticed a large coronal hole near the CME’s birthplace. Coronal holes are areas where the solar wind — a stream of particles flowing from the Sun — floods outward at higher than normal speeds.
      “The fast solar wind coming from this coronal hole acted like an air current, nudging the CME away from its original straight-line path and pushing it closer to Earth’s orbital plane,” said the paper’s lead author, Evangelos Paouris of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “In addition to this deflection, the CME also rotated slightly.”
      Paouris says this turned the CME’s magnetic fields opposite to Earth’s magnetic field and held them there — allowing more of the Sun’s energy to pour into Earth’s environment and intensifying the storm.
      The strength of the April 2023 geomagnetic storm was a surprise in part because the coronal mass ejection (CME) that produced it followed a relatively weak solar flare, seen as the bright area to the lower right of center in this extreme ultraviolet image of the Sun from NASA’s Solar Dynamics Observatory. The CMEs that produce severe geomagnetic storms are typically preceded by stronger flares. However, a team of scientists think fast solar wind from a coronal hole (the dark area below the flare in this image) helped rotate the CME and made it more potent when it struck Earth. NASA/SDO Cool Thermosphere
      Meanwhile, NASA’s GOLD (Global-scale Observations of Limb and Disk) mission revealed another unexpected consequence of the April 2023 storm at Earth.
      Before, during, and after the storm, GOLD studied the temperature in the middle thermosphere, a part of Earth’s upper atmosphere about 85 to 120 miles overhead. During the storm, temperatures increased throughout GOLD’s wide field of view over the Americas. But surprisingly, after the storm, temperatures dropped about 90 to 198 degrees Fahrenheit lower than they were before the storm (from about 980 to 1,070 degrees Fahrenheit before the storm to 870 to 980 degrees Fahrenheit afterward).
      “Our measurement is the first to show widespread cooling in the middle thermosphere after a strong storm,” said Xuguang Cai of the University of Colorado, Boulder, lead author of a paper about GOLD’s observations published in the journal JGR Space Physics on April 15, 2025.
      The thermosphere’s temperature is important, because it affects how much drag Earth-orbiting satellites and space debris experience.
      “When the thermosphere cools, it contracts and becomes less dense at satellite altitudes, reducing drag,” Cai said. “This can cause satellites and space debris to stay in orbit longer than expected, increasing the risk of collisions. Understanding how geomagnetic storms and solar activity affect Earth’s upper atmosphere helps protect technologies we all rely on — like GPS, satellites, and radio communications.”
      Predicting When Storms Strike
      To predict when a CME will trigger a geomagnetic storm, or be “geoeffective,” some scientists are combining observations with machine learning. A paper published last November in the journal Solar Physics describes one such approach called GeoCME.
      Machine learning is a type of artificial intelligence in which a computer algorithm learns from data to identify patterns, then uses those patterns to make decisions or predictions.
      Scientists trained GeoCME by giving it images from the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft of different CMEs that reached Earth along with SOHO images of the Sun before, during, and after each CME. They then told the model whether each CME produced a geomagnetic storm.
      Then, when it was given images from three different science instruments on SOHO, the model’s predictions were highly accurate. Out of 21 geoeffective CMEs, the model correctly predicted all 21 of them; of 7 non-geoeffective ones, it correctly predicted 5 of them.
      “The algorithm shows promise,” said heliophysicist Jack Ireland of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved in the study. “Understanding if a CME will be geoeffective or not can help us protect infrastructure in space and technological systems on Earth. This paper shows machine learning approaches to predicting geoeffective CMEs are feasible.”
      The white cloud expanding outward in this image sequence is a coronal mass ejection (CME) that erupted from the Sun on April 21, 2023. Two days later, the CME struck Earth and produced a surprisingly strong geomagnetic storm. The images in this sequence are from a coronagraph on the NASA/ESA (European Space Agency) SOHO (Solar and Heliospheric Observatory) spacecraft. The coronagraph uses a disk to cover the Sun and reveal fainter details around it. The Sun’s location and size are indicated by a small white circle. The planet Jupiter appears as a bright dot on the far right. NASA/ESA/SOHO Earlier Warnings
      During a severe geomagnetic storm in May 2024 — the strongest to rattle Earth in over 20 years — NASA’s STEREO (Solar Terrestrial Relations Observatory) measured the magnetic field structure of CMEs as they passed by.
      When a CME headed for Earth hits a spacecraft first, that spacecraft can often measure the CME and its magnetic field directly, helping scientists determine how strong the geomagnetic storm will be at Earth. Typically, the first spacecraft to get hit are one million miles from Earth toward the Sun at a place called Lagrange Point 1 (L1), giving us only 10 to 60 minutes advanced warning.
      By chance, during the May 2024 storm, when several CMEs erupted from the Sun and merged on their way to Earth, NASA’s STEREO-A spacecraft happened to be between us and the Sun, about 4 million miles closer to the Sun than L1.
      A paper published March 17, 2025, in the journal Space Weather reports that if STEREO-A had served as a CME sentinel, it could have provided an accurate prediction of the resulting storm’s strength 2 hours and 34 minutes earlier than a spacecraft could at L1.
      According to the paper’s lead author, Eva Weiler of the Austrian Space Weather Office in Graz, “No other Earth-directed superstorm has ever been observed by a spacecraft positioned closer to the Sun than L1.”
      Earth’s Lagrange points are places in space where the gravitational pull between the Sun and Earth balance, making them relatively stable locations to put spacecraft. NASA By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By NASA
      Credit: NASA/Krystofer Kim Read this release in English here.
      La NASA estrenó el martes el primer episodio de la tercera temporada de Universo curioso de la NASA, el único pódcast en español de la agencia.
      Los episodios se centran en algunas de las principales misiones y temas de investigación de la NASA para 2025, llevando la maravilla de la exploración, la tecnología espacial y los descubrimientos científicos al público de habla hispana de todo el mundo.
      “La ciencia de la NASA está literalmente en todas partes, y trasciende la geografía y los idiomas para ofrecer beneficios, en tiempo real, en la vida cotidiana de las personas de todo el mundo que utilizan nuestras innovaciones, datos y descubrimientos científicos alcanzados desde el punto de vista único del espacio”, dijo la doctora Nicky Fox, administradora asociada de la Dirección de Misiones Científicas, en la sede central de la NASA en Washington. “El pódcast Universo curioso de la NASA comparte los descubrimientos de la NASA con las comunidades de habla hispana de todo el mundo, inspirando a futuros exploradores a unirse a nuestro viaje mientras regresamos a la Luna y nos aventuramos hacia Marte en beneficio de toda la humanidad”.
      Todos los meses se presentarán nuevos episodios hasta el final del año. El primer episodio, centrado en los objetivos científicos de la misión a la Luna Artemis II de la NASA, está disponible en:
      https://go.nasa.gov/4l9lmbN

      Universo curioso es presentado por Noelia González, especialista en comunicaciones en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland. Esta temporada tendrá al coanfitrión Andrés Almeida, escritor técnico y anfitrión del pódcast de la NASA Small Steps, Giant Leaps (Pasos pequeños, grandes saltos) en la sede central de la NASA. A lo largo de la temporada, los oyentes celebrarán el legado del telescopio espacial Hubble de la NASA, aprenderán sobre una próxima misión al Sol y explorarán la energía oscura y cómo la estudiará el futuro telescopio espacial Roman, entre otros temas.
      Universo curioso de la NASA es una iniciativa conjunta de los programas de comunicaciones en español y audio de la agencia. La nueva temporada, así como los episodios anteriores, están disponibles en Apple Podcasts, Spotify, SoundCloud y el sitio web de la NASA.
      Escucha el pódcast y descarga materiales de arte relacionados en el sitio web:
      https://ciencia.nasa.gov/universocurioso
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      NASA en español Podcasts View the full article
    • By NASA
      Credit: NASA/Krystofer Kim Lee esta nota en español aquí.
      NASA released the first episode Tuesday of its third season of Universo curioso de la NASA, the agency’s only Spanish-language podcast.
      Episodes focus on some of NASA’s top missions and research topics for 2025, bringing the wonder of exploration, space technology, and scientific discoveries to Spanish-speaking audiences around the world. 
      “NASA Science is literally everywhere, transcending geography and language to provide real time benefits to everyday lives across the globe using our scientific innovations, data, and discoveries from the unique vantage point of space,” said Dr. Nicky Fox, associate administrator, Science Mission Directorate, at NASA Headquarters in Washington. “The Universo curioso de la NASA podcast shares NASA’s discoveries with Spanish-speaking communities across the globe, inspiring future explorers to join our journey as we return to the Moon and venture onward to Mars for the benefit of all humanity.”


      New episodes will post every month through the end of the year. The first episode, centered on the science objectives of NASA’s Artemis II mission to the Moon, is available at:
      https://go.nasa.gov/4l9lmbN

      Universo curioso is hosted by Noelia González, communications specialist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. This season introduces co-host Andrés Almeida, technical writer and host of NASA’s Small Steps, Giant Leaps podcast at NASA’s Headquarters. Throughout the season, listeners will celebrate the legacy of NASA’s Hubble Space Telescope, learn about an upcoming mission to the Sun, and explore dark energy and how the future Roman Space Telescope will study it, among other topics.

      Universo curioso de la NASA is a joint initiative of the agency’s Spanish-language communications and audio programs. The new season, as well as previous episodes, are available on Apple Podcasts, Spotify, SoundCloud and NASA’s website.

      Listen to the podcast and download related art materials at:
      https://ciencia.nasa.gov/universocurioso
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Podcasts General View the full article
    • By NASA
      NASA astronaut Anil Menon poses for a portrait at NASA’s Johnson Space Center in Houston. Credit: NASA/Josh Valcarcel NASA astronaut Anil Menon will embark on his first mission to the International Space Station, serving as a flight engineer and Expedition 75 crew member.
      Menon will launch aboard the Roscosmos Soyuz MS-29 spacecraft in June 2026, accompanied by Roscosmos cosmonauts Pyotr Dubrov and Anna Kikina. After launching from the Baikonur Cosmodrome in Kazakhstan, the trio will spend approximately eight months aboard the orbiting laboratory.
      During his expedition, Menon will conduct scientific investigations and technology demonstrations to help prepare humans for future space missions and benefit humanity.
      Selected as a NASA astronaut in 2021, Menon graduated with the 23rd astronaut class in 2024. After completing initial astronaut candidate training, he began preparing for his first space station flight assignment.
      Menon was born and raised in Minneapolis and is an emergency medicine physician, mechanical engineer, and colonel in the United States Space Force. He holds a bachelor’s degree in neurobiology from Harvard University in Cambridge, Massachusetts, a master’s degree in mechanical engineering, and a medical degree from Stanford University in California. Menon completed his emergency medicine and aerospace medicine residency at Stanford and the University of Texas Medical Branch in Galveston.
      In his spare time, he still practices emergency medicine at Memorial Hermann’s Texas Medical Center and teaches residents at the University of Texas’ residency program. Menon served as SpaceX’s first flight surgeon, helping to launch the first crewed Dragon spacecraft on NASA’s SpaceX Demo-2 mission and building SpaceX’s medical organization to support humans on future missions. He served as a crew flight surgeon for both SpaceX flights and NASA expeditions aboard the space station.
      For nearly 25 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond. 
      Learn more about International Space Station at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov

      Shaneequa Vereen
      Johnson Space Center, Houston
      281-483-5111
      shaneequa.y.vereen@nasa.gov   
      Share
      Details
      Last Updated Jul 01, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX Media accreditation is open for the launch of NASA’s 11th rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft carrying astronauts to the International Space Station for a science expedition. NASA’s SpaceX Crew-11 mission is targeted to launch in the late July/early August timeframe from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      The mission includes NASA astronauts Zena Cardman, serving as commander; Mike Fincke, pilot; JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, mission specialist; and Roscosmos cosmonaut Oleg Platonov, mission specialist. This is the first spaceflight for Cardman and Platonov, the fourth trip for Fincke, and the second for Yui, to the orbiting laboratory.
      Media accreditation deadlines for the Crew-11 launch as part of NASA’s Commercial Crew Program are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, July 6. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Monday, July 14. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, July 14.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...