Jump to content

Recommended Posts

Posted
Satnav-enabled precision farming

What does satellite navigation have to do with sustainable development? Quite a lot, in fact. Satnav and other positioning, navigation and timing (PNT) technologies provide critical data that support green solutions across numerous sectors. From enabling smart mobility to optimising energy grids and facilitating precision farming, the potential for PNT to drive sustainability is immense.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Robert Williams is a senior mechanical design engineer and the structures subject matter expert in the Engineering and Test Directorate at NASA’s Stennis Space Center.NASA/Danny Nowlin Living up to, and maintaining, the standard of excellence associated with NASA is what drives Robert Williams at NASA’s Stennis Space Center near Bay St. Louis, Mississippi.
      A native of Gulfport, Mississippi, Williams said he has had the opportunity to work with and be mentored by “some truly exceptional” engineers, some with careers reaching back to the Apollo era.
      “I cannot overstate the vast amount of practical knowledge and experience we have at NASA Stennis,” Williams said. “We know how to get things done, and if we do not know, I can guarantee we will figure it out.”
      Williams is a senior mechanical design engineer and the structures subject matter expert for the NASA Stennis Engineering and Test Directorate.
      He provides technical oversight related to engineering mechanics and machine design by reviewing analysis and design packages from NASA Stennis contractors and NASA engineers for ongoing projects.
      Williams also supports projects by performing analysis and creating detailed models, drawings, and system level designs, mostly at the versatile four-stand E Test Complex, where NASA Stennis has 12 active test cells capable of various component, engine, and stage test activities to support the agency and commercial companies.
      In support of NASA’s Artemis campaign of returning astronauts to the Moon, Williams also has reviewed structural and pipe stress analysis for the exploration upper stage project that will test a new SLS (Space Launch System) rocket stage to fly on future Artemis missions.
      He performed similar review work for Green Run testing of the SLS core stage at NASA Stennis ahead of the successful launch of the Artemis I uncrewed mission around the Moon. 
      Overall, Williams has been a part of projects on every test stand throughout more than eight years with NASA and five years as a contractor. He has been tasked with solving challenging problems, both individually and as a part of teams.
      There were times when he was not sure if he or the team would be able to solve the problem or address it effectively, but each time, the NASA Stennis team found a way.
      “Over the span of my career, I have yet to be in a situation where the challenge was not met,” he said.
      The opportunity to work with “pretty much all the major space companies in some capacity” is most interesting to Williams. “The best thing is that being a small organization within a relatively small center, there are always opportunities to develop new skills and capabilities to help fill a need or gap,” he said.
      No matter the task, Williams looks forward to supporting space innovation while living up to, and maintaining, the standard of excellence associated with NASA for the benefit of all. 
      Explore More
      3 min read Lagniappe for April 2025
      Article 4 weeks ago 4 min read Lagniappe for March 2025
      Article 2 months ago 6 min read NASA Stennis Flashback: Learning About Rocket Engine Exhaust for Safe Space Travel
      Article 2 months ago View the full article
    • By NASA
      4 Min Read Navigation Technology
      ESA astronaut Matthias Maurer sets up an Astrobee for the ReSWARM experiment. Credits: NASA Science in Space April 2025
      Humans have always been explorers, venturing by land and sea into unknown and uncharted places on Earth and, more recently, in space. Early adventurers often navigated by the Sun and stars, creating maps that made it easier for others to follow. Today, travelers on Earth have sophisticated technology to guide them.
      Navigation in space, including for missions to explore the Moon and Mars, remains more of a challenge. Research on the International Space Station is helping NASA scientists improve navigation tools and processes for crewed spacecraft and remotely controlled or autonomous robots to help people boldly venture farther into space, successfully explore there, and safely return home.
      NASA astronaut Nichole Ayers talks to students on the ground using ham radio equipment.NASA A current investigation, NAVCOM, uses the space station’s ISS Ham Radio program hardware to test software for a system that could shape future lunar navigation. The technology processes signals in the same way as global navigation satellite systems such as GPS, but while those rely on constellations of satellites, the NAVCOM radio equipment receives position and time information from ground stations and reference clocks.
      The old made new
      ESA astronaut Alexander Gerst operates the Sextant Navigation device.NASA Sextant Navigation tested star-sighting from space using a hand-held sextant. These mechanical devices measure the angle between two objects, typically the Sun or other stars at night and the horizon. Sextants guided navigators on Earth for centuries and NASA’s Gemini and Apollo missions demonstrated that they were useful in space as well, meaning they could provide emergency backup navigation for lunar missions. Researchers report that with minimal training and practice, crew members of different skill levels produced quality sightings through a station window and measurements improved with more use. The investigation identified several techniques for improving sightings, including refocusing between readings and adjusting the sight to the center of the window.
      Navigating by neutron stars
      The station’s NICER instrument studies the nature and behavior of neutron stars, the densest objects in the universe. Some neutron stars, known as pulsars, emit beams of light that appear to pulse, sweeping across the sky as the stars rotate. Some of them pulse at rates as accurate as atomic clocks. As part of the NICER investigation, the Station Explorer for X-ray Timing and Navigation Technology or SEXTANT tested technology for using pulsars in GPS-like systems to navigate anywhere in the solar system. SEXTANT successfully completed a first in-space demonstration of this technology in 2017. In 2018, researchers reported that real-time, autonomous X-ray pulsar navigation is clearly feasible and they plan further experiments to fine tune and modify the technology.
      Robot navigation
      Crews on future space exploration missions need efficient and safe ways to handle cargo and to move and assemble structures on the surface of the Moon or Mars. Robots are promising tools for these functions but must be able to navigate their surroundings, whether autonomously or via remote control, often in proximity with other robots and within the confines of a spacecraft. Several investigations have focused on improving navigation by robotic helpers.
      NASA astronaut Michael Barratt (left) and JAXA astronaut Koichi Wakata perform a check of the SPHERES robots.NASA The SPHERES investigation tested autonomous rendezvous and docking maneuvers with three spherical free-flying robots on the station. Researchers reported development of an approach to control how the robots navigate around obstacles and along a designated path, which could support their use in the future for satellite servicing, vehicle assembly, and spacecraft formation flying.
      NASA astronaut Megan McArthur with the three Astrobee robots.NASA The station later gained three cube-shaped robots known as Astrobees. The ReSWARM experiments used them to test coordination of multiple robots with each other, cargo, and their environment. Results provide a base set of planning and control tools for robotic navigation in close proximity and outline important considerations for the design of future autonomous free-flyers.
      Researchers also used the Astrobees to show that models to predict the robots’ behavior could make it possible to maneuver one or two of them for carrying cargo. This finding suggests that robots can navigate around each other to perform tasks without a human present, which would increase their usefulness on future missions.
      ESA astronaut Samantha Cristoforetti working on the Surface Avatar experiment.ESA An investigation from ESA (European Space Agency), Surface Avatar evaluated orbit-to-ground remote control of multiple robots. Crew members successfully navigated a four-legged robot, Bert, through a simulated Mars environment. Robots with legs rather than wheels could explore uneven lunar and planetary surfaces that are inaccessible to wheeled rovers. The German Aerospace Center is developing Bert.

      View the full article
    • By NASA
      NASA astronaut and Expedition 72 Flight Engineer Don Pettit sets up camera hardware to photograph research activities inside the International Space Station’s Kibo laboratory module on March 15, 2025.Credit: NASA Media are invited to a news conference at 2 p.m. EDT Monday, April 28, at NASA’s Johnson Space Center in Houston where astronaut Don Pettit will share details of his recent mission aboard the International Space Station.
      The news conference will stream live on NASA’s website. Learn how to stream NASA content through a variety of platforms.
      To participate in person, U.S. media must contact the NASA Johnson newsroom no later than 5 p.m. Thursday, April 24, at 281-483-5111 or jsccommu@mail.nasa.gov. Media wishing to participate by phone must contact the newsroom no later than two hours before the start of the event. To ask questions by phone, media must dial into the news conference no later than 10 minutes prior to the start of the call. NASA’s media accreditation policy is available online.
      Questions also may be submitted on social media during the news conference by using #AskNASA. Following the news conference, NASA will host a live question and answer session with Pettit on the agency’s Instagram. For more information, visit @NASA on social media.
      Pettit returned to Earth on April 19 (April 20, Kazakhstan time), along with Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. Pettit celebrated his 70th birthday on April 20. He spent 220 days in space as an Expedition 71/72 flight engineer, bringing his career total to 590 days in space during four spaceflights. Pettit and his crewmates completed 3,520 orbits of Earth over the course of their 93-million-mile journey. They also saw the arrival of six visiting spacecraft and the departure of seven.
      During his time on orbit, Pettit conducted hundreds of hours of scientific investigations, including research to enhance on-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions.
      He also spent time aboard the space station sharing his photography, often posting images to his X account. He took more than 670,000 photos during his stay.
      Learn more about International Space Station research and operations at:
      http://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Apr 23, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA uses radio frequency (RF) for a variety of tasks in space, including communications. The Europa Clipper RF panel — the box with the copper wiring near the top — will send data carried by radio waves through the spacecraft between the electronics and eight antennas. Credit: NASA Even before we’re aware of heart trouble or related health issues, our bodies give off warning signs in the form of vibrations. Technology to detect these signals has ranged from electrodes and patches to watches. Now, an innovative wall-mounted technology is capable of monitoring vital signs. Advanced TeleSensors Inc. developed the Cardi/o Monitor with an exclusive license from NASA’s Jet Propulsion Laboratory in Southern California. 

      Over the course of five years, NASA engineers created a small, inexpensive, contactless device to measure vital signs, a challenging task partly because monitoring heart rate requires picking out motions of about one three-thousandth of an inch, which are easily swamped by other movement in the environment.  

      By the late 1990s, hardware and computing technology could meet the challenge, and the NASA JPL team created a prototype the size of a thick textbook. It would emit a radio beam toward a stationary person, working similarly to a radar, and algorithms differentiated cardiac and respiratory activity from the “noise” of other movements.  

      When Sajol Ghoshal, now CEO of Austin, Texas-based Advanced TeleSensors, participated in a demonstration of the prototype, he saw the potential for in-home monitoring. By then, developing an affordable device was possible due to the miniaturization of sensors and computing technology.  
      The Cardi/o vital sign monitor uses NASA-developed technology to continually monitor vital signs. The data collected can be sent directly to medical care providers, cutting down on the number of home healthcare visits. Credit: Advanced TeleSensors Inc. The Cardi/o Monitor is 3 inches square and mounts to a ceiling or wall. It can detect vital signs from up to 10 feet. Multiple devices can be scattered throughout a house, with a smartphone app controlling settings and displaying all data on a single dashboard. The algorithms NASA developed detect heartbeat and respiration, and the company added heart rate variability detection that indicates stress and sleep apnea.  

      If there’s an anomaly, such as a dramatic heart rate increase, an alert in the app calls attention to the situation. Up to six months of data is stored in a secure cloud, making it accessible to healthcare providers. This limits the need for regular in-person visits, which is particularly important for conditions such as infectious diseases, which can put medical professionals and other patients at risk.  

      Through the commercialization of this life-preserving technology, NASA is at the heart of advancing health solutions.  
      Read More Share
      Details
      Last Updated Apr 07, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 2 weeks ago 2 min read NASA Expertise Helps Record all the Buzz
      Article 3 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Jet Propulsion Laboratory – News
      Solar System

      View the full article
    • By NASA
      4 Min Read Ways Community College Students Can Get Involved With NASA
      For many students, the path to a NASA career begins at a community college. These local, two-year institutions offer valuable flexibility and options to those aspiring to be part of the nation’s next generation STEM workforce. NASA offers several opportunities for community college students to expand their horizons, make connections with agency experts, add valuable NASA experiences to their resumes, and home in on the types of STEM roles that best fit their skills and interests. Below are some of the exciting NASA activities and experiences available to community college students.
      NASA Community College Aerospace Scholars
      Get an introduction to NASA, its missions, and its workplace culture through NASA Community College Aerospace Scholars (NCAS). This three-part series enables students to advance their knowledge of the agency, grow their STEM capabilities, interact with NASA experts, and learn about the different pathways to a NASA career.
      Mission 1: Discover is a five-week, online orientation course that serves as an introduction to NASA.
      Mission 2: Explore is a gamified mission to the Moon or Mars in which students develop a design solution while learning about the agency as a workplace.
      Mission 3: Innovate is a three-week hybrid capstone project consisting of two weeks of online preparation and one week participating in a hands-on engineering design challenge at a NASA center.
      NCAS begins with Mission 1 and students must complete each mission to be eligible for the next.
      Members of a college student team monitor the performance of their robot during a NASA Community College Aerospace Scholars (NCAS) Mission 3: Innovate robotics competition.
      NASA Student Challenges
      NASA’s student challenges and competitions invite students across a range of ages and education levels to innovate and build solutions to many of the agency’s spaceflight and aviation needs – and community college students across the U.S. are eligible for many of these opportunities. In NASA’s Student Launch challenge, each team designs, builds, and tests a high-powered rocket carrying a scientific or engineering payload. In the MUREP Innovation Tech Transfer Idea Competition (MITTIC)Teams from U.S.-designated Minority-Serving Institutions, including community colleges, have the opportunity to brainstorm and pitch new commercial products based on NASA technology.
      NASA’s student challenges and competitions are active at varying times throughout the year – new challenges are sometimes added, and existing opportunities evolve – so we recommend students visit the NASA STEM Opportunities and Activities page and research specific challenges to enable planning and preparation for future participation.
      NASA’s Student Launch tasks student teams from across the U.S. to design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. The annual challenge culminates with a final launch in Huntsville, Alabama, home of NASA’s Marshall Space Flight Center.
      NASA NASA RockOn! and RockSat Programs
      Build an experiment and launch it aboard a sounding rocket! Through the hands-on RockOn! and RockSat programs, students gain experience designing and building an experiment to fly as a payload aboard a sounding rocket launched from NASA’s Wallops Flight Facility in Wallops Island, Virginia. In RockOn!, small teams get an introduction to creating a sounding rocket experiment, while RockSat-C and RockSat-X are more advanced experiment flight opportunities.
      Students watch as their experiments launch aboard a sounding rocket for the RockSat-X program from NASA’s Wallops Flight Facility Aug. 11, 2022, at 6:09 p.m. EDT. The Terrier-Improved Malemute rocket carried the experiments to an altitude of 99 miles before descending via a parachute and landing in the Atlantic Ocean.
      NASA Wallops/Terry Zaperach NASA Internships
      Be a part of the NASA team! With a NASA internship, students work side-by-side with agency experts, gaining authentic workforce experience while contributing to projects that align with NASA’s goals. Internships are available in a wide variety of disciplines in STEM and beyond, including communications, finance, and more. Each student has a NASA mentor to help guide and coach them through their internship.
      NASA interns gain hands-on experience while contributing to agency projects under the guidance of a NASA mentor.
      NASA National Space Grant College and Fellowship Program
      The National Space Grant College and Fellowship Project, better known as Space Grant, is a national network of colleges and universities working to expand opportunities for students and the public to participate in NASA’s aeronautics and space projects. Each state has its own Space Grant Consortium that may provide STEM education and training programs; funding for scholarships and/or internships; and opportunities to take part in research projects, public outreach, state-level student challenges, and more. Programs, opportunities, and offerings vary by state; students should visit their state’s Space Grant Consortium website to find out about opportunities available near them.
      Students from the Erie Huron Ottawa Vocational Education Career Center are pictured at the 3KVA Mobile Photovoltaic Power Plant at NASA’s Glenn Research Center.
      NASA Additional Resources
      NASA Community College Network NASA Earth Science Division Early Career Research NASA STEM Gateway Careers at NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...