Jump to content

Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip


Recommended Posts

  • Publishers
Posted

Due to launch in the early 2030s, NASA’s DAVINCI mission will investigate whether Venus — a sweltering world wrapped in an atmosphere of noxious gases — once had oceans and continents like Earth.

Consisting of a flyby spacecraft and descent probe, DAVINCI will focus on a mountainous region called Alpha Regio, a possible ancient continent. Though a handful of international spacecraft plunged through Venus’ atmosphere between 1970 and 1985, DAVINCI’s probe will be the first to capture images of this intriguing terrain ever taken from below Venus’ thick and opaque clouds.

But how does a team prepare for a mission to a planet that hasn’t seen an atmospheric probe in nearly 50 years, and that tends to crush or melt its spacecraft visitors?

Scientists leading the DAVINCI mission started by using modern data-analysis techniques to pore over decades-old data from previous Venus missions. Their goal is to arrive at our neighboring planet with as much detail as possible. This will allow scientists to most effectively use the probe’s descent time to collect new information that can help answer longstanding questions about Venus’ evolutionary path and why it diverged drastically from Earth’s.

Two nearly identical scenes are side by side. Each has a blue background with a splotchy brown and tan pattern on top of it. The image on the left is much sharper than the one on the right, with texture and shades of colors visible. A small, red ellipse marks a spot a little left of the center of the splotchy pattern.
On the left, a new and more detailed view of Venus’ Alpha Regio region developed by scientists on NASA’s DAVINCI mission to Venus, due to launch in the early 2030s. On the right is a less detailed map created using radar altimeter data collected by NASA’s Magellan spacecraft in the early 1990s. The colors on the maps depict topography, with dark blues identifying low elevations and browns identifying high elevations. To make the map on the left, the DAVINCI science team re-analyzed Magellan data and supplemented it with radar data collected on three occasions from the Arecibo Observatory in Puerto Rico, and used machine vision computer models to scrutinize the data and fill in gaps in information. The red ellipses on each image mark the area DAVINCI’s probe will descend over as it collects data on its way toward the surface.
Jim Garvin/NASA’s Goddard Space Flight Center

Between 1990 and 1994, NASA’s Magellan spacecraft used radar imaging and altimetry to map the topography of Alpha Regio from Venus’ orbit. Recently, NASA’s DAVINICI’s team sought more detail from these maps, so scientists applied new techniques to analyze Magellan’s radar altimeter data. They then supplemented this data with radar images taken on three occasions from the former Arecibo Observatory in Puerto Rico and used machine vision computer models to scrutinize the data and fill in gaps in information at new scales (less than 0.6 miles, or 1 kilometer).  

As a result, scientists improved the resolution of Alpha Regio maps tenfold, predicting new geologic patterns on the surface and prompting questions about how these patterns could have formed in Alpha Regio’s mountains.  

Benefits of Looking Backward

Old data offers many benefits to new missions, including information about what frequencies, parts of spectrum, or particle sizes earlier instruments covered so that new instruments can fill in the gaps.

At NASA Space Science Data Coordinated Archive, which is managed out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, staff restore and digitize data from old spacecraft. That vintage data, when compared with modern observations, can show how a planet changes over time, and can even lead to new discoveries long after missions end. Thanks to new looks at Magellan observations, for instance, scientists recently found evidence of modern-day volcanic activity on Venus.

Magellan was among the first missions to be digitally archived in NASA’s publicly accessible online repository of planetary mission data. But the agency has reams of data — much of it not yet digitized — dating back to 1958, when the U.S. launched its first satellite, Explorer 1.

Data restoration is a complex and resource-intensive job, and NASA prioritizes digitizing data that scientists need. With three forthcoming missions to Venus — NASA’s DAVINCI and VERITAS, plus ESA’s (European Space Agency) Envision — space data archive staff are helping scientists access data from Pioneer Venus, NASA’s last mission to drop probes into Venus’ atmosphere in 1978.

Mosaic of Venus

Alpha Regio is one of the most mysterious spots on Venus. Its terrain, known as “tessera,” is similar in appearance to rugged Earth mountains, but more irregular and disorderly.

So called because they resemble a geometric parquet floor pattern, tesserae have been found only on Venus, and DAVINCI will be the first mission to explore such terrain in detail and to map its topography.

DAVINCI’s probe will begin photographing Alpha Regio — collecting the highest-resolution images yet — once it descends below the planet’s clouds, starting at about 25 miles, or 40 kilometers, altitude. But even there, gases in the atmosphere scatter light, as does the surface, such that these images will appear blurred.

Could Venus once have been a habitable world with liquid water oceans — like Earth? This is one of the many mysteries associated with our shrouded sister world. Credit: NASA’s Goddard Space Flight Center

DAVINCI scientists are working on a solution. Recently, scientists re-analyzed old Venus imaging data using a new artificial-intelligence technique that can sharpen the images and use them to compute three-dimensional topographic maps. This technique ultimately will help the team optimize DAVINCI’s images and maps of Alpha Regio’s mountains. The upgraded images will give scientists the most detailed view ever — down to a resolution of 3 feet, or nearly 1 meter, per pixel — possibly allowing them to detect small features such as rocks, rivers, and gullies for the first time in history.

“All this old mission data is part of a mosaic that tells the story of Venus,” said Jim Garvin, DAVINCI principal investigator and chief scientist at NASA Goddard. “A story that is a masterpiece in the making but incomplete.”

By analyzing the surface texture and rock types at Alpha Regio, scientists hope to determine if Venusian tesserae formed through the same processes that create mountains and certain volcanoes on Earth.

By Lonnie Shekhtman

NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NuCLEUS, developed by Interstellar Lab, is an autonomous system that grows microgreens, vegetables, and more for astronauts to eat in space.Interstellar Lab NASA invests in technologies that have the potential to revolutionize space exploration, including the way astronauts live in space. Through the Deep Space Food Challenge, NASA, in partnership with CSA (Canadian Space Agency), sought novel food production systems that could provide long-duration human space exploration missions with safe, nutritious, and tasty food. Three winners selected last summer are now taking their technology to new heights – figuratively and literally – through commercial partnerships. 
      Interstellar Lab of Merritt Island, Florida, won the challenge’s $750,000 grand prize for its food production system NuCLEUS (Nutritional Closed-Loop Eco-Unit System), by demonstrating an autonomous operation growing microgreens, vegetables, and mushrooms, as well as sustaining insects for use in an astronaut’s diet. To address the requirements of the NASA challenge, NuCLEUS includes an irrigation system that sustains crop growth with minimal human intervention. This end-to-end system supplies fresh ingredients to support astronauts’ health and happiness, with an eye toward what the future of dining on deep space missions to Mars and the Moon may look like. 
      Since the close of the challenge, Interstellar Lab has partnered with aerospace company Vast to integrate a spinoff of NuCLEUS, called Eden 1.0, on Haven-1, a planned commercial space station. Eden 1.0 is a plant growth unit designed to conduct research on plants in a microgravity environment using functions directly stemming from NuCLEUS.  
      “The NASA Deep Space Food Challenge was a pivotal catalyst for Interstellar Lab, driving us to refine our NuCLEUS system and directly shaping the development of Eden 1.0, setting the stage for breakthroughs in plant growth research to sustain life both in space and on Earth,” said Barbara Belvisi, founder and CEO of Interstellar Lab. 
      Fuanyi Fobellah, one of the “Simunauts” from The Ohio State University who tested food production technologies as part of the Deep Space Food Challenge, removes a cooked omelet from the SATED appliance.NASA/Savannah Bullard Team SATED (Safe Appliance, Tidy, Efficient & Delicious) of Boulder, Colorado, earned a $250,000 second prize for its namesake appliance, which creates an artificial gravitational force that presses food ingredients against its heated inner surface for cooking. The technology was developed by Jim Sears, who entered the contest as a one-person team and has since founded the small business SATED Space LLC.  
      At the challenge finale event, the technology was introduced to the team of world-renowned chef and restaurant owner, José Andrés. The SATED technology is undergoing testing with the José Andrés Group, which could add to existing space food recipes that include lemon cake, pizza, and quiche. The SATED team also is exploring partnerships to expand the list of ingredients compatible with the appliance, such as synthetic cooking oils safe for space. 
      Delicious food was a top priority in the Deep Space Food Challenge. Sears noted the importance of food that is more than mere sustenance. “When extremely high performance is required, and the situations are demanding, tough, and lonely, the thing that pulls it all together and makes people operate at their best is eating fresh cooked food in community.” 
      Team Nolux won a $250,000 second-place prize for its Nolux food system that uses artificial photosynthesis to grow ingredients that could be used by astronauts in space.OSU/CFAES/Kenneth Chamberlain Team Nolux, formed from faculty members, graduate, and undergraduate students from the University of California, Riverside, also won a $250,000 second prize for its artificial photosynthesis system. The Nolux system – whose name means “no light” – grows plant and fungal-based foods in a dark chamber using acetate to chemically stimulate photosynthesis without light, a capability that could prove valuable in space with limited access to sunlight.  
      Some members of the Nolux team are now commercializing select aspects of the technology developed during the challenge. These efforts are being pursued through a newly incorporated company focused on refining the technology and exploring market applications. 
      A competition inspired by NASA’s Deep Space Food Challenge will open this fall.  
      Stay tuned for more information: https://www.nasa.gov/prizes-challenges-and-crowdsourcing/centennial-challenges/  
      View the full article
    • By Space Force
      The Air Force Chaplain Corps wrapped up its annual summit, bringing together Religious Support Teams from across the Total Force to focus on spiritual readiness and alignment under the Chaplain Corps’ new motto: HC Ready!

      View the full article
    • By NASA
      A member of the space crop production team prepares materials for Veggie seed pillows inside the Space Systems Processing Facility at NASA’s Kennedy Space Center. NASA/Cory S Huston When the Crew-11 astronauts launched to the International Space Station on August 1, 2025, they carried with them another chapter in space farming: the latest VEG-03 experiments, complete with seed pillows ready for planting.
      Growing plants provides nutrition for astronauts, as well as psychological benefits that help maintain crew morale during missions.
      During VEG-03 MNO, astronauts will be able to choose what they want to grow from a seed library including Wasabi mustard greens, Red Russian Kale, and Dragoon lettuce.
      From Seed to Space Salad
      The experiment takes place inside Veggie, a chamber about the size of carry-on luggage. The system uses red, blue, and green LED lights to provide the right spectrum for plant growth. Clear flexible bellows — accordion-like walls that expand to accommodate maturing plants — create a semi-controlled environment around the growing area.
      Astronauts plant thin strips containing their selected seeds into fabric “seed pillows” filled with a special clay-based growing medium and controlled-release fertilizer. The clay, similar to what’s used on baseball fields, helps distribute water and air around the roots in the microgravity environment. 
      Crew members will monitor the plants, add water as needed, and document growth through regular photographs. At harvest time, astronauts will eat some of the fresh produce while freezing other samples for return to Earth, where scientists will analyze their nutritional content and safety.
      How this benefits space exploration
      Fresh food will become critical as astronauts venture farther from Earth on missions to the Moon and Mars. NASA aims to validate different kinds of crops to add variety to astronaut diets during long-duration space exploration missions, while giving crew members more control over what they grow and eat.
      How this benefits humanity
      The techniques developed for growing crops in space’s challenging conditions may also improve agricultural practices on Earth. Indoor crop cultivation approaches similar to what astronauts do in Veggie might also be adapted for horticultural therapy programs, giving elderly or disabled individuals new ways to experience gardening when traditional methods aren’t accessible.
      Related Resources
      VEG-03 MNO on the Space Station Research Explorer
      Veggie Vegetable Product System
      Veggie Plant Growth System Activated on International Space Station
      About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By NASA
      While it may sound like the opening to a punchline, this scientific question was at the heart of a research experiment that orbited the Moon aboard Artemis I.NASA astronaut and Expedition 65 Flight Engineer Mark Vande Hei caring for chili peppers aboard the International Space Station. NASA New research uncovers the connection between space agriculture and astronaut health. A study published in npj Microgravity shows how analyzing diverse datasets together can reveal insights that might otherwise be missed — in this case, linking space-grown food quality to astronaut nutrition and gut health.
      The paper reviewed previous studies of plants grown aboard the International Space Station. The authors found that some edible plants grown in low Earth orbit have lower concentrations of essential nutrients, like calcium and magnesium, than those grown on Earth.
      The reduced levels of these nutrients could make crops not as effective in mitigating the bone loss and reduced immune function that astronauts encounter in space.
      Working Groups Uncover Hidden Health Connections
      Three Analysis Working Groups from NASA’s Open Science Data Repository collaborated to make this paper possible. These discipline-specific groups typically work independently, but this project sparked conversations among researchers with different specialties.
      Researchers combined plant data, crop nutrition profiles, gut studies, and astronaut blood biomarkers — a data integration effort of the Biological and Physical Sciences Division open science model. The work also draws on data from JAXA (Japan Aerospace Exploration Agency).
      For NASA, these findings offer new insights into how to feed and support astronauts in space, particularly on long-duration missions to the Moon and Mars.
      Seeks Ways to Improve Space Diets
      The study also examined increased intestinal permeability — often called “leaky gut” — a condition that can result from poor nutrition and may be exacerbated by the space environment. Intestinal permeability may interfere with how astronauts absorb nutrients and regulate immune responses.
      If properly engineered, space-grown crops could offer a solution to these health challenges. The team outlined several potential strategies, including bioengineering plants with higher nutrient content, incorporating more antioxidant-rich species, and designing personalized nutrition plans using astronauts’ genetic information.
      The study suggests targeting specific biological pathways, such as using compounds like quercetin, an antioxidant found in certain crops, to address bone health challenges at the molecular level. The approach emphasizes designing nutrition plans based on individual astronaut physiology, including how well their digestive systems can absorb nutrients.
      Related Resources

      Open Science Data Repository
      Open Science Data Repository Analysis Working Groups (AWG)
      About BPS
      NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
      View the full article
    • By European Space Agency
      Astronomers using the NASA/ESA/CSA James Webb Space Telescope have found strong evidence of a giant planet orbiting a star in the stellar system closest to our own Sun. At just 4 light-years away from Earth, the Alpha Centauri triple star system has long been a compelling target in the search for worlds beyond our solar system.
      View the full article
  • Check out these Videos

×
×
  • Create New...