Jump to content

Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The yellowish-blue planet Saturn with its Titan moon in the foreground.
A natural color view from Cassini of Saturn with its Titan moon in the foreground in August 2012. Titan’s diameter is 50% larger than Earth’s moon.
Credit: NASA

NASA’s ambitious Cassini mission to Saturn in the late 1990s was one of the agency’s greatest accomplishments, providing unprecedented revelations about the esoteric outer planet and its moons. The complex undertaking was also a tremendous, yet bittersweet, achievement for the Lewis Research Center (today, NASA’s Glenn Research Center in Cleveland), which oversaw the rockets that propelled Cassini to Saturn. Cassini brought a close to over 35 years of Lewis’ management of NASA’s launch vehicles.

Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch

1. NASA Lewis Launched the Largest and Most Complex Deep-Space Mission to Date

In the early 1980s, NASA began planning the first-ever in-depth study of the planet Saturn. The mission would use the Cassini orbiter designed by NASA’s Jet Propulsion Laboratory in Southern California and the European Space Agency’s Huygens lander. It was one of the heaviest and most complex interplanetary spacecraft ever assembled. Cassini’s plutonium power system and intricate flight path further complicated the mission.

NASA Lewis was responsible for managing the launches of government missions involving the Centaur upper stage and the Atlas and Titan boosters. Cassini’s 6-ton payload forced Lewis to use the U.S. Air Force’s three-stage Titan IV, the most powerful vehicle available, and pair it with the most advanced version of the Centaur, referred to as G-prime.

A very tall brown and silver spacecraft shroud stands inside a large grey chamber and towers over a person, seen at its bottom right.
The Titan IV shroud in the Space Power Facility in October 1990. It was only the second test since the world-class facility had been brought back online after over a decade in standby conditions.
Credit: NASA/Quentin Schwinn

2. Lewis Performed Hardware Testing for the Cassini Launch

One of NASA Lewis’ primary launch responsibilities was integrating the payload and upper stages with the booster. This involved balancing weight requirements, providing adequate insulation for Centaur’s cryogenic propellants, determining correct firing times for the stages, and ensuring that that the large shroud, which encapsulated both the upper stage and payload, jettisoned cleanly after launch.

By the time of Cassini, the center had been testing shrouds (including the Titan III fairing) in simulated space conditions for over 25 years. NASA’s Space Power Facility possesses the world’s largest vacuum chamber and was large enough to accommodate the Titan IV’s 86-foot-tall, 16-foot-diameter fairing. In the fall of 1990, the shroud was installed in the chamber, loaded with weights that simulated the payload, and subjected to atmospheric pressures found at an altitude of 72 miles.

The system was successfully separated in less than half a second. Using simulated Cassini and Centaur vehicles, NASA engineers also redesigned a thicker thermal blanket that would protect Cassini’s power system from acoustic vibrations during liftoff.

An overhead view of a large group of people wearing professional clothing who stand outside in front of a large, silver rocket model.
Members of NASA Lewis’ Launch Vehicle Directorate pose with a Centaur model in May 1979 to mark the 50th successful launch of the Atlas/Centaur.
Credit: NASA/Martin Brown

3. Lewis Personnel Assisted with the Launch

In late August 1997, a group of NASA Lewis engineers traveled to NASA’s Kennedy Space Center in Florida to make final preparations for the Cassini launch, working with Air Force range safety personnel at Patrick Air Force Base to ensure a safe launch under all circumstances.

After an aborted launch two days earlier, the vehicle was readied for another attempt in the evening of October 14. Lewis personnel took stations in the Launch Vehicle Data Center inside Hangar AE to monitor the launch vehicle’s temperature, pressure, speed, trajectory, and vibration during the launch. The weather was mild, and the countdown proceeded into the morning hours of October 15 without any major issues.

At 4:43 a.m. EDT, Titan’s first stage and the two massive solid rocket motors roared to life, and the vehicle rose into the dark skies over Florida. The Lewis launch team monitored the flight as the vehicle exited Earth’s atmosphere, Titan burned through its stages, and Centaur sent Cassini out of Earth orbit and on its 2-billion-mile journey to Saturn. After a successful spacecraft separation, Lewis’ responsibilities were complete. The launch had gone exceedingly well

An illustration of a shiny silver spacecraft in space orbiting a reddish-brown moon. The planet Saturn can be seen to the right of the spacecraft and moon, and another small silver lander can be seen descending to the moon’s surface.
This illustration depicts the Cassini orbiter with the Huygens lander descending to the Titan moon (left) and Saturn in the background.
Credit: NASA

4. Cassini-Huygens Brought a Close to Decades of Lewis Launch Operations

Cassini-Huygens was NASA Lewis’ 119th and final launch, and it brought to a close the center’s decades of launch operations. The center had been responsible for NASA’s upper-stage vehicles since the fall of 1962. The primary stages were the Agena, which had 28 successful launches, and Centaur, which has an even more impressive track record and remains in service today.

While Lewis continued to handle vehicle integration and other technical issues for launches of NASA payloads, in the 1980s, NASA began transferring launch responsibilities to commercial entities. In the mid-1990s, NASA underwent a major realignment that consolidated all launch vehicle responsibilities at NASA Kennedy.

So it was with mixed emotions that around 20 Lewis employees and retirees gathered at the Cleveland center in the early morning hours of Oct. 15, 1997, to watch the Cassini launch. The group held its cheers for 40 minutes after liftoff until Lewis’ responsibilities concluded for the last time with the safe separation of Cassini from Centaur. “In many ways, this is the end of an era, across the agency and, in particular, here at Lewis,” noted one engineer from the Launch Vehicle and Transportation Office.

Surrounded by darkness, a large rocket blasts off from a launchpad as orange-white smoke billows out from underneath it.
The Titan IV/Centaur lifts off from Launch Complex 40 at Cape Canaveral on Oct. 15, 1997. NASA Lewis engineers were monitoring the launch from Hangar AE, roughly 3.5 miles to the south.
Credit: NASA

5. Cassini Made Groundbreaking Discoveries That Inform Today’s NASA Missions

Cassini’s seven-year voyage to Saturn included flybys of Venus (twice), Earth, and Jupiter so that the planets’ gravitational forces could accelerate the spacecraft. Cassini entered Saturn’s orbit in June 2004 and began relaying data and nearly half a million images back to Earth. Huygens separated from the spacecraft and descended to the surface of the Saturn’s largest moon, Titan, in January 2005. It was the first time a vehicle ever landed on a celestial body in the outer solar system.

Cassini went on to make plunges into the planet’s upper atmosphere and through Saturn’s rings.  Scientific information on the mysterious planet, its moons, and rings led to the publication of nearly 4,000 technical papers. After over 13 years and nearly 300 orbits, on Sept. 15, 2017, NASA intentionally sent Cassini plummeting into the atmosphere where it burned up, ending its remarkable mission.

NASA engineers used their experiences from the Cassini mission to help design the Europa Clipper, which is intended to perform flybys of Jupiter’s moon Europa. Europa Clipper launched on Oct. 14.

Keep Exploring

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      El piloto de pruebas de la NASA Nils Larson inspecciona el avión de investigación F-15D de la agencia en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, antes de un vuelo de calibración para una sonda de detección de impactos de campo cercano recién instalada. Montada en el F-15D, la sonda está diseñada para medir las ondas de choque generadas por el silencioso avión supersónico X-59 durante el vuelo. Los datos ayudarán a los investigadores a comprender mejor cómo se comportan las ondas de choque en las proximidades de la aeronave, apoyando la misión Quesst de la NASA para permitir vuelos supersónicos silenciosos sobre tierra.NASA/Steve Freeman El piloto de pruebas de la NASA Nils Larson inspecciona el avión de investigación F-15D de la agencia en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, antes de un vuelo de calibración para una sonda de detección de impactos de campo cercano recién instalada. Montada en el F-15D, la sonda está diseñada para medir las ondas de choque generadas por el silencioso avión supersónico X-59 durante el vuelo. Los datos ayudarán a los investigadores a comprender mejor cómo se comportan las ondas de choque en las proximidades de la aeronave, apoyando la misión Quesst de la NASA para permitir vuelos supersónicos silenciosos sobre tierra.NASA/Steve Freeman El avión de investigación F-15D de la NASA realiza un vuelo de prueba cerca de Edwards, California, con una sonda de detección de impactos de campo cercano. Idéntica a una versión previamente volada que estaba prevista como reserva, esta nueva sonda captará datos de ondas de choque cerca del X-59 mientras vuela a velocidad más rápida que la del sonido apoyando la misión Quesst de la NASA.NASA/Jim Ross El avión de investigación F-15D de la NASA realiza un vuelo de prueba cerca de Edwards, California, con una sonda de detección de impactos de campo cercano. Idéntica a una versión previamente volada que estaba prevista como reserva, esta nueva sonda captará datos de ondas de choque cerca del X-59 mientras vuela a velocidad más rápida que la del sonido apoyando la misión Quesst de la NASA.NASA/Jim Ross Read this story in English here.
      Cuando se prueba un avión de última generación de la NASA, se necesitan herramientas especializadas para realizar pruebas y capturar datos, pero si esas herramientas necesitan mantenimiento, hay que esperar hasta que se reparen. A menos que tengas un respaldo. Por eso, recientemente la NASA ha calibró una nueva sonda de deteccíon de impactos para capturar datos de ondas de choque cuando el silencioso avión de investigación supersónico X-59 de la agencia inicie sus vuelos de prueba. 
      Cuando un avión vuela más rápido que la velocidad del sonido, produce ondas de choque que viajan a través del aire, creando fuertes estampidos sónicos. El X-59 desviará esas ondas de choque, produciendo sólo un silencioso golpe supersónico. En las últimas semanas, la NASA ha completado los vuelos de calibración de una nueva sonda de detección de impactos de campo cercano, un aparato en forma de cono que captará datos sobre las ondas de choque que generará el X-59. 
      Esta sonda está montada en un avión de investigación F-15D que volará muy cerca del X-59 para recopilar los datos que necesita la NASA. La nueva unidad servirá como la sonda de campo cercano principal de la NASA, con un modelo idéntico desarrollado por la NASA el año pasado actuará como reserva montada en otro F-15B. 
      Las dos unidades significan que el equipo del X-59 tiene una alternativa lista en caso de que la sonda principal necesite mantenimiento o reparaciones. Para pruebas de vuelo como las del X-59, donde la recopilación de datos es crucial y las operaciones giran en torno a plazos ajustados, condiciones meteorológicas y otras variables, las copias de respaldo de los equipos críticos ayudan a garantizar la continuidad, mantener los plazos y preservar la eficiencia de las operaciones. 
      “Si le ocurre algo a la sonda, como una falla en unsensor, no hay una solución fácil,” explica Mike Frederick, investigador principal de la sonda en el Centro de Investigación de Vuelos Armstrong de la NASA en Edwards, California. “El otro factor es el propio avión. Si uno necesita mantenimiento, no queremos retrasar los vuelos del X-59.” 
      Para calibrar la nueva sonda, el equipo midió las ondas de choque de un avión de investigación F/A-18 de la NASA. Los resultados preliminares indicaron que la sonda captó con éxito los cambios de presión asociados a las ondas de choque, de acuerdo con las expectativas del equipo. Frederick y su equipo ahora están revisando los datos para confirmar que se alinean con los modelos matemáticos en tierra y cumplen las normas de precisión requeridas para los vuelos X-59. 
      Los investigadores de la NASA en Armstrong se están preparando para vuelos adicionales con las sondas principal y de respaldo en sus aviones F-15. Cada avión volará a velocidad supersónico y recopilará datos de las ondas de choque del otro. El equipo está trabajando para validar tanto la sonda principal como la de respaldo para confirmar la redundancia total;en otras palabras, asegurarse de que tengan un respaldo fiable y listo para usar. 
      Artículo Traducido por: Priscila Valdez
      Share
      Details
      Last Updated May 13, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronáutica NASA en español Explore More
      5 min read Las carreras en la NASA despegan con las pasantías
      Article 1 day ago 4 min read El X-59 de la NASA completa las pruebas electromagnéticas
      Article 2 months ago 11 min read La NASA identifica causa de pérdida de material del escudo térmico de Orion de Artemis I
      Article 5 months ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Teams at NASA’s Michoud Assembly Facility in New Orleans move a liquid hydrogen tank for the agency’s SLS (Space Launch System) rocket into the factory’s final assembly area on April 22, 2025. The propellant tank is one of five major elements that make up the 212-foot-tall rocket stage. NASA/Steven Seipel NASA completed another step to ready its SLS (Space Launch System) rocket for the Artemis III mission as crews at the agency’s Michoud Assembly Facility in New Orleans recently applied a thermal protection system to the core stage’s liquid hydrogen tank.
      Building on the crewed Artemis II flight test, Artemis III will add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole region and prepare humanity to go to Mars. Thermal protection systems are a cornerstone of successful spaceflight endeavors, safeguarding human life, and enabling the launch and controlled return of spacecraft.
      The tank is the largest piece of SLS flight hardware insulated at Michoud. The hardware requires thermal protection due to the extreme temperatures during launch and ascent to space – and to keep the liquid hydrogen at minus 423 degrees Fahrenheit on the pad prior to launch.
      “The thermal protection system protects the SLS rocket from the heat of launch while also keeping the thousands of gallons of liquid propellant within the core stage’s tanks cold enough. Without the protection, the propellant would boil off too rapidly to replenish before launch,” said Jay Bourgeois, thermal protection system, test, and integration lead at NASA Michoud. “Thermal protection systems are crucial in protecting all the structural components of SLS during launch and flight.”
      In February, Michoud crews with NASA and Boeing, the SLS core stage prime contractor, completed the thermal protection system on the external structure of the rocket’s liquid hydrogen propellant fuel tank, using a robotic tool in what is now the largest single application in spaceflight history. The robotically controlled operation coated the tank with spray-on foam insulation, distributing 107 feet of the foam to the tank in 102 minutes. When the foam is applied to the core stage, it gives the rocket a canary yellow color. The Sun’s ultraviolet rays naturally “tan” the thermal protection, giving the SLS core stage its signature orange color, like the space shuttle external tank.
      Having recently completed application of the thermal protection system, teams will now continue outfitting the 130-foot-tall liquid hydrogen tank with critical systems to ready it for its designated Artemis III mission. The core stage of SLS is the largest ever built by length and volume, and was manufactured at Michoud using state-of-the-art manufacturing equipment. (NASA/Steven Seipel) While it might sound like a task similar to applying paint to a house or spraying insulation in an attic, it is a much more complex process. The flexible polyurethane foam had to withstand harsh conditions for application and testing. Additionally, there was a new challenge: spraying the stage horizontally, something never done previously during large foam applications on space shuttle external tanks at Michoud. All large components of space shuttle tanks were in a vertical position when sprayed with automated processes.
      Overall, the rocket’s core stage is 212 feet with a diameter of 27.6 feet, the same diameter as the space shuttle’s external tank. The liquid hydrogen and liquid oxygen tanks feed four RS-25 engines for approximately 500 seconds before SLS reaches low Earth orbit and the core stage separates from the upper stage and NASA’s Orion spacecraft.
      “Even though it only takes 102 minutes to apply the spray, a lot of careful preparation and planning is put into this process before the actual application of the foam,” said Boeing’s Brian Jeansonne, the integrated product team senior leader for the thermal protection system at NASA Michoud. “There are better process controls in place than we’ve ever had before, and there are specialized production technicians who must have certifications to operate the system. It’s quite an accomplishment and a lot of pride in knowing that we’ve completed this step of the build process.”
      The core stage of SLS is the largest NASA has ever built by length and volume, and it was manufactured at Michoud using state-of-the-art manufacturing equipment. Michoud is a unique, advanced manufacturing facility where the agency has built spacecraft components for decades, including the space shuttle’s external tanks and Saturn V rockets for the Apollo program.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      For more information on the Artemis Campaign, visit:
      https://www.nasa.gov/feature/artemis/
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034 
      jonathan.e.deal@nasa.gov
      View the full article
    • By NASA
      Sasha Weston, project support, Small Spacecraft and Distributed Systems program, with the Project and Engineering Support Services II contract with NASA, discusses the program with a participant, right, during Ames Partnership Days on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley. Through partnerships, the program advances technologies that enable small spacecraft to achieve NASA missions in faster and more affordable ways.NASA/Brandon Torres Navarrete On April 29, more than 90 representatives from industry, U.S. federal labs, government agencies, and academia gathered at NASA’s Ames Research Center in California’s Silicon Valley to learn about the center’s groundbreaking research and development capabilities. The three-day event provided insight into the many ways to collaborate with NASA, including tapping into the agency’s singular subject matter expertise and gaining access to state-of-the-art facilities at NASA Ames and centers across the country. Partnerships help the agency to advance technological innovation, enable science, and foster the emerging space economy.
      Terry Fong, senior scientist for autonomous systems at NASA Ames, summed up the objective of the event when he noted, “I don’t believe anyone – government, academia, industry – has a monopoly on good ideas. It’s how you best combine forces to have the greatest effect.”
      Terry Fong, senior scientist at NASA Ames, center, discusses the center’s capabilities in intelligent adaptive systems and potential applications with Jessica Nowinski, chief of the Human Systems Integration division, left, and Alonso Vera, senior technologist, right, on April 29, 2025, at NASA’s Ames Research Center in California’s Silicon Valley.NASA/Brandon Torres Navarrete Author: Jeanne Neal
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      Ames Research Center General Get Involved NASA Centers & Facilities Partner With Us Small Business Innovation Research / Small Business Keep Exploring Discover More Topics From NASA
      SmallSats and CubeSats
      These miniaturized spacecrafts are used to deliver small payloads into space. LTB (Lunar Trailblazer) is an example of a SmallSat…
      Technology and Innovation
      NASA innovates and tests new technology on satellites and planes, helping commercial and academic partners develop better ways to observe…
      Technology Workshops and Events
      SBIR/STTR News & Success Stories
      View the full article
    • By NASA
      Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
      Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
      With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
      In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
      These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
      ViewSpace currently offers three Image Tours, and the collection will continue growing:
      Center of the Milky Way Galaxy:
      Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
      Herbig-Haro 46/47:
      Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
      The Whirlpool Galaxy:
      Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
      “The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
      NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
      Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share








      Details
      Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Astrophysics For Educators Explore More
      5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora


      Article


      1 day ago
      2 min read Hubble Comes Face-to-Face with Spiral’s Arms


      Article


      4 days ago
      7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What is a black hole?

      Well, the name is actually a little misleading because black holes aren’t actually holes. They’re regions in space that have a gravitational pull that is so strong that nothing can escape, not even light. Scientists know about two different sizes of black holes — stellar-mass black holes and supermassive black holes.

      A stellar-mass black hole is born when a massive star dies. That’s a star that’s larger than our own Sun. These stars burn up all the nuclear fuel in their cores, and this causes them to collapse under their own gravity. This collapse causes an explosion that we call a supernova. The entire mass of the star is collapsing down into a tiny point, and the area of the black hole is just a few kilometers across.

      Supermassive black holes can have a mass of millions to tens of billions of stars. Scientists believe that every galaxy in the universe contains a supermassive black hole. That’s up to one trillion galaxies in the universe. But we don’t know how these supermassive black holes form. And this is an area of active research.

      What we do know is that supermassive black holes are playing a really important part in the formation and evolution of galaxies, and into our understanding of our place in the universe.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated May 13, 2025 Related Terms
      General Explore More
      1 min read NASA Ames Stars of the Month: May 2025
      Article 1 day ago 3 min read NASA Earns Two Emmy Nominations for 2024 Total Solar Eclipse Coverage
      Article 5 days ago 2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...