Jump to content

Revealing the Hidden Universe with Full-shell X-ray Optics at NASA MSFC


Recommended Posts

  • Publishers
Posted

The study of X-ray emission from astronomical objects reveals secrets about the Universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.

X-ray observations also enable us to probe mysteries of the Universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the Universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres. At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the Universe’s X-ray mysteries into sharper focus.

Purple, blue and white swirls overlaid with a pattern of orange dashed lines in the center.
A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines.
Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection.  In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.

A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).

Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds.  The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better. 

Cutaway image of a tube with black and green lines passing through it and converging on a gray square.
Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane.
NASA MSFC

NASA Marshall Space Flight Center (MSFC) has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. MSFC utilizes an electroformed nickel replication (ENR) technique to make these thin full-shell X-ray optics from nickel alloy.

X-ray optics development at MSFC began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, MSFC launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray (>10 keV) images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula.  This initial effort resulted in several follow-up missions over the next 12 years, and became known as the High Energy Replicated Optics (HERO) balloon program.

In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with MSFC optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven MSFC-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with an MSFC-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.

Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution MSFC MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently MSFC is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.

Left: two team members in white protective gear standing in a large tube; the individual in front is standing behind a large cylinder embedded in a rectangular case. Right: A team member in blue protective gear working on a large tubular-shaped device in a lab.
Scientists Wayne Baumgartner (left, crouched) and Nick Thomas (left, standing) calibrate an IXPE MMA in the MSFC 100 m Beamline. Scientist Stephen Bongiorno (right) applies epoxy to an IXPE shell during MMA assembly.
NASA MSFC

The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, MSFC is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.

Given that these optics are made with the Electroformed Nickel Replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.

Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at MSFC are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.

Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.

At MSFC, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.

Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, MSFC is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, MSFC is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.

Project Leads

Dr. Jessica Gaskin and Dr. Stephen Bongiorno, NASA Marshall Space Flight Center (MSFC)

Sponsoring Organizations

The NASA Astrophysics Division supports this work primarily through the Internal Scientist Funding Model Direct Work Package and competed solicitations. This work is also supported by the Heliophysics Division through competed solicitations, as well as by directed work from other government entities.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Northrop Grumman’s Cygnus spacecraft, atop a SpaceX Falcon 9 rocket, soars from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Aug. 4, 2024, for Northrop Grumman’s 21st Commercial Resupply Services mission for NASA.Credit: SpaceX Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. A Northrop Grumman Cygnus spacecraft will launch to the orbital laboratory on a SpaceX Falcon 9 rocket for NASA.
      The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23. Liftoff is targeted for mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Following launch, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus, and the spacecraft will be installed robotically to the Unity module’s Earth-facing port for cargo unloading. The spacecraft will remain at the space station for more than two months.
      Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Wednesday, Aug. 27. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      This is the 23rd spacecraft built to deliver goods to the International Space Station. In March, NASA and Northrop Grumman moved up the company’s Commercial Resupply Services-23 mission to September following damage to the Cygnus Pressurized Cargo Module during shipping for the company’s Commercial Resupply Services-22 flight.
      Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      In addition to food, supplies, and equipment for the crew, Cygnus will deliver research, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. Cygnus also will deliver a specialized UV light system to prevent biofilm growth and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For almost 25 years, humans have continuously lived and worked aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s commercial resupply missions at:
      https://www.nasa.gov/station
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Aug 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply International Space Station (ISS) ISS Research Northrop Grumman Commercial Resupply View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NuCLEUS, developed by Interstellar Lab, is an autonomous system that grows microgreens, vegetables, and more for astronauts to eat in space.Interstellar Lab NASA invests in technologies that have the potential to revolutionize space exploration, including the way astronauts live in space. Through the Deep Space Food Challenge, NASA, in partnership with CSA (Canadian Space Agency), sought novel food production systems that could provide long-duration human space exploration missions with safe, nutritious, and tasty food. Three winners selected last summer are now taking their technology to new heights – figuratively and literally – through commercial partnerships. 
      Interstellar Lab of Merritt Island, Florida, won the challenge’s $750,000 grand prize for its food production system NuCLEUS (Nutritional Closed-Loop Eco-Unit System), by demonstrating an autonomous operation growing microgreens, vegetables, and mushrooms, as well as sustaining insects for use in an astronaut’s diet. To address the requirements of the NASA challenge, NuCLEUS includes an irrigation system that sustains crop growth with minimal human intervention. This end-to-end system supplies fresh ingredients to support astronauts’ health and happiness, with an eye toward what the future of dining on deep space missions to Mars and the Moon may look like. 
      Since the close of the challenge, Interstellar Lab has partnered with aerospace company Vast to integrate a spinoff of NuCLEUS, called Eden 1.0, on Haven-1, a planned commercial space station. Eden 1.0 is a plant growth unit designed to conduct research on plants in a microgravity environment using functions directly stemming from NuCLEUS.  
      “The NASA Deep Space Food Challenge was a pivotal catalyst for Interstellar Lab, driving us to refine our NuCLEUS system and directly shaping the development of Eden 1.0, setting the stage for breakthroughs in plant growth research to sustain life both in space and on Earth,” said Barbara Belvisi, founder and CEO of Interstellar Lab. 
      Fuanyi Fobellah, one of the “Simunauts” from The Ohio State University who tested food production technologies as part of the Deep Space Food Challenge, removes a cooked omelet from the SATED appliance.NASA/Savannah Bullard Team SATED (Safe Appliance, Tidy, Efficient & Delicious) of Boulder, Colorado, earned a $250,000 second prize for its namesake appliance, which creates an artificial gravitational force that presses food ingredients against its heated inner surface for cooking. The technology was developed by Jim Sears, who entered the contest as a one-person team and has since founded the small business SATED Space LLC.  
      At the challenge finale event, the technology was introduced to the team of world-renowned chef and restaurant owner, José Andrés. The SATED technology is undergoing testing with the José Andrés Group, which could add to existing space food recipes that include lemon cake, pizza, and quiche. The SATED team also is exploring partnerships to expand the list of ingredients compatible with the appliance, such as synthetic cooking oils safe for space. 
      Delicious food was a top priority in the Deep Space Food Challenge. Sears noted the importance of food that is more than mere sustenance. “When extremely high performance is required, and the situations are demanding, tough, and lonely, the thing that pulls it all together and makes people operate at their best is eating fresh cooked food in community.” 
      Team Nolux won a $250,000 second-place prize for its Nolux food system that uses artificial photosynthesis to grow ingredients that could be used by astronauts in space.OSU/CFAES/Kenneth Chamberlain Team Nolux, formed from faculty members, graduate, and undergraduate students from the University of California, Riverside, also won a $250,000 second prize for its artificial photosynthesis system. The Nolux system – whose name means “no light” – grows plant and fungal-based foods in a dark chamber using acetate to chemically stimulate photosynthesis without light, a capability that could prove valuable in space with limited access to sunlight.  
      Some members of the Nolux team are now commercializing select aspects of the technology developed during the challenge. These efforts are being pursued through a newly incorporated company focused on refining the technology and exploring market applications. 
      A competition inspired by NASA’s Deep Space Food Challenge will open this fall.  
      Stay tuned for more information: https://www.nasa.gov/prizes-challenges-and-crowdsourcing/centennial-challenges/  
      View the full article
    • By NASA
      NASA Honor Award recipients are shown with their award plaques, alongside NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell, following the ceremony at NASA Stennis on Aug. 13. Pictured (left to right) is Andrew Bracey, Briou Bourgeois, Jared Grover, Robert Simmers, Robert Williams, Richard Wear, Tom Stanley, Alison Dardar, Marvin Horne, Cary Tolman, Tim Pierce, Rebecca Mataya, Bailey, Powell, Gina Ladner, and Brittany Bouche. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey speaks to employees during the NASA Honor Awards ceremony at NASA Stennis on Aug. 13. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell presented NASA Honor Awards to employees during an onsite ceremony Aug. 13.
      One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission.
      Marvin Horne of Fulton, Maryland, received the NASA Outstanding Leadership Medal for his work in the Office of Procurement that has resulted in significant cost savings for the agency. Among his accomplishments, Horne designed, implemented, and led an integrated contract management office between NASA Stennis, NASA’s Michoud Assembly Facility in New Orleans, and NASA’s Marshall Space Flight Center in Huntsville, Alabama. The office transformed facility services from independent models to a shared model. The innovative solution was the first joint contract management office at NASA Stennis comprised of procurement, finance, and technical personnel designed to implement effective and efficient business processes. Horne currently serves as the NASA acting administrator for procurement.
      Three NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives.
      Jared Grover of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for his contributions to the success of the NASA Stennis E Test Complex through his dedication and technical expertise. As a NASA mechanical operations engineer, he has led various testing and facility preparation efforts, worked with challenging propellants, and trained new personnel. His work has supported numerous NASA and commercial aerospace projects Grover is also active in community outreach, promoting NASA’s mission and inspiring future engineers.
      Tim Pierce of Long Beach, Mississippi, received the NASA Exceptional Service Medal following 26 years with NASA and 41 years working at NASA Stennis as a contractor and civil servant in the Center Operations Directorate. Through Pierce’s contributions, NASA Stennis became a leader in drafting agreements with external agencies, streamlining administrative procedures, and enhancing partnerships. In one notable instance, he led efforts to collaborate with county officials on a sewer treatment project that will save costs and optimize underused infrastructure. Pierce retired from NASA in January 2025.
      Barry Robinson of Slidell, Louisiana, received the NASA Exceptional Service Medal in absentia for service to the nation’s space program and achievement across multiple propulsion test programs and projects. Robinson joined NASA in 1994 and worked on the space shuttle main engine test project, eventually becoming a test operations consultant. Over the years, Robinson held various roles, including chief of the NASA Stennis Mechanical Engineering Branch and project manager for projects supporting NASA’s SLS (Space Launch System) rocket for Artemis missions to the Moon and beyond. Robinson retired from NASA in December 2024.
      One NASA Stennis employee received NASA’s Exceptional Engineering Achievement Medal. The medal is awarded to both government and non-government individuals for exceptional engineering contributions toward achievement of NASA’s mission.
      Richard Wear of Slidell, Louisiana, received the NASA Exceptional Engineering Achievement Medal for his contributions to the NASA Stennis Engineering and Test Directorate. Wear serves as the subject matter expert in thermal and fluid systems analysis. In that role, he has greatly contributed to facilitating the use of liquid natural gas propellant in testing onsite, including by developing a Cryogenics in Propulsion Testing training course to support future test projects and programs. His contributions have significantly enhanced NASA’s support for commercial partners at NASA Stennis.
      Eight NASA Stennis employees received NASA’s Exceptional Achievement Medal. This medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.
      Leslie Anderson of Picayune, Mississippi, received the NASA Exceptional Achievement Medal in absentia for leadership and customer service as the lead accountant in the Office of the Chief Financial Officer at NASA Stennis. Anderson has successfully managed critical financial activities with technical expertise, project management, and strong customer service skills. Her efforts help maintain federal partnerships worth approximately $70 million annually and contribute to the success of NASA Stennis, demonstrating NASA’s core values of integrity, teamwork, excellence, and inclusion.
      Alison Dardar of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for innovation in improving financial and technical processes associated with the $1 billion-plus consolidated operations and maintenance contract for NASA Stennis and NASA’s Michoud Assembly Facility in New Orleans. As senior budget analyst in the NASA Stennis Office of the Chief Financial Officer, Dardar led in identifying and addressing key reporting and accounting issues related to the contract. Her innovations resulted in a 55% improvement in cost reporting accuracy and $20 million in savings to the contract.
      Gina Ladner of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for management, problem solving, and leadership during a year-long detail as chief of the NASA Stennis Facilities Services Division. During the year, Ladner led the division team through numerous changes and tackled unexpected challenges, including a severe weather event that featured confirmed tornados onsite and a contractor work stoppage activity, to ensure ongoing site operations. She also led in numerous infrastructure investments, including repairs to roadways, fire systems, and communications equipment.
      Rebecca Mataya of Carriere, Mississippi, received the NASA Exceptional Achievement Medal for service as a budget analyst in the NASA Stennis Office of the Chief Financial Officer in improving processes and operations. As an analyst on the procurement development team for a new operations, services, and infrastructure contract, Mataya identified creative methods to increase cost savings and maximize facility projects. She also has helped secure over $408 million for facility improvements, enhancing water systems, power generation, and more.
      Tom Stanley of Biloxi, Mississippi, received the NASA Exceptional Achievement Medal for contributions to improve NASA’s technology transfer process. As the NASA Stennis technology transfer officer, he developed a tool to standardize and automate evaluation of software usage agreements, reducing costs by 10 times and evaluation time by 75%. The changes led to record numbers of agreements awarded. Stanley also created a tool for contract closeouts, which has contributed to cost savings for the agency.
      Cary Tolman of Fort Walton Beach, Florida, received the NASA Exceptional Achievement Medal for work in the NASA Office of the General Counsel. Beyond her role as procurement attorney, Tolman established a software and management audit review team to provide consistent and timely legal advice on software licenses and terms. Tolman’s work has helped NASA save $85 million and simplified legal support for software issues while reducing cybersecurity and financial risk.
      Casey Wheeler of Gulfport, Mississippi, received the NASA Exceptional Achievement Medal for leadership and innovation in replacing the high pressure water industrial water system that supports crucial testing facilities at NASA Stennis. As project manager in the NASA Stennis Center Operations Directorate, Wheeler showcased his planning and coordination skills by completing the complex project without delaying rocket engine testing. His work restored the system to full design pressure in an area that directly supports NASA’s SLS (Space Launch System) rocket through RS-25 engine testing, and other critical projects.
      Dale Woolridge of Slidell, Louisiana, received the NASA Exceptional Achievement Medal in absentia for contributions as project manager in the NASA Stennis Center Operations Directorate. Woolridge successfully led multiple construction projects, completing them on time and within budget. One notable project was the refurbishment of the miter gates at NASA Stennis’ navigational lock, which supports NASA’s rocket engine testing operations. The team completed the refurbishment ahead of schedule and within budget, ensuring minimal disruption to NASA operations.
      Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency.
      Briou Bourgeois of Pass Christian, Mississippi, received the NASA Early Career Achievement for his contributions in the NASA Stennis Engineering and Test Directorate. Bourgeois joined NASA in 2017 and has worked on various projects, including the SLS (Space Launch System) core stage Green Run test series and RS-25 engine testing for Artemis missions. Bourgeois played a key role in modifying the liquid oxygen tanking process during the SLS core stage series. He has since become test director in the NASA Stennis E Test Complex and a leader in commercial test projects at NASA Stennis.
      Brandon Ladner of Poplarville, Mississippi, received the NASA Early Career Achievement Medal for contributions to the Exploration Upper Stage Test Project on the Thad Cochran Test Stand at NASA Stennis. As the NASA lead mechanical design engineer for the project, Ladner has significantly contributed to the design and build-up of the B-2 position of the Thad Cochran Test Stand in preparation for Green Run testing of the new SLS (Space Launch System) upper stage. He has led in completion of numerous large design packages and provided valuable engineering oversight to improve construction schedule.
      Robert Simmers of Slidell, Louisiana, received the NASA Early Career Achievement for his expertise and versatility since joining NASA in 2015 as a member of the NASA Stennis Safety and Mission Assurance Directorate team. He serves as the safety point of contact for the Thad Cochran Test Stand (B-2). In that role, he supported all operations during Green Run testing of NASA’s SLS (Space Launch System) core stage. Simmers also has supported safety audits at various NASA centers. In 2020, he became the NASA Stennis explosive safety officer responsible for explosive safety and compliance.
      Robert Williams of Gulfport, Mississippi, received the NASA Early Career Achievement for his work in the NASA Stennis Engineering and Test Directorate. Williams has worked with NASA for eight years, serving as a lead mechanical design engineer for several commercial test projects. Williams is recognized as a subject matter expert in structural systems and has contributed to various NASA Stennis projects, providing technical and modeling expertise.
      Two NASA Stennis employees received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner.
      Brittany Bouche of Slidell, Louisiana, received the NASA Silver Achievement Medal for contributions in the NASA Stennis Center Operations Directorate. Bouche has held multiple key roles in the Facilities Services Division, including acting deputy, maintenance and operations lead, and project manager for several construction projects. She has successfully led various design and construction projects, completing them on time and within budget. These include a $9.1 million sewage system and treatment repair project, successfully completed with minimal service impact.
      Andrew Bracey of Picayune, Mississippi, received the NASA Silver Achievement Medal for contributions as a NASA electrical design engineer at NASA Stennis. He has provided critical design support for work related to Green Run testing of the new SLS (Space Launch System) exploration upper stage. Bracey also has been crucial to the NASA Stennis vision of supporting commercial aerospace testing, leading preliminary design reviews for multiple projects onsite.
      Read More on Stennis Space Center Share
      Details
      Last Updated Aug 14, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 3 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 3 months ago View the full article
    • By NASA
      Explore Hubble Science Hubble Space Telescope NASA’s Hubble Uncovers Rare… Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities   5 min read
      NASA’s Hubble Uncovers Rare White Dwarf Merger Remnant
      This is an illustration of a white dwarf star merging into a red giant star. A bow shock forms as the dwarf plunges through the star’s outer atmosphere. The passage strips down the white dwarf’s outer layers, exposing an interior carbon core. Artwork: NASA, ESA, STScI, Ralf Crawford (STScI) An international team of astronomers has discovered a cosmic rarity: an ultra-massive white dwarf star resulting from a white dwarf merging with another star, rather than through the evolution of a single star. This discovery, made by NASA’s Hubble Space Telescope’s sensitive ultraviolet observations, suggests these rare white dwarfs may be more common than previously suspected.
      “It’s a discovery that underlines things may be different from what they appear to us at first glance,” said the principal investigator of the Hubble program, Boris Gaensicke, of the University of Warwick in the United Kingdom. “Until now, this appeared as a normal white dwarf, but Hubble’s ultraviolet vision revealed that it had a very different history from what we would have guessed.”
      A white dwarf is a dense object with the same diameter as Earth, and represents the end state for stars that are not massive enough to explode as core-collapse supernovae. Our Sun will become a white dwarf in about 5 billion years. 
      In theory, a white dwarf can have a mass of up to 1.4 times that of the Sun, but white dwarfs heavier than the Sun are rare. These objects, which astronomers call ultra-massive white dwarfs, can form either through the evolution of a single massive star or through the merger of a white dwarf with another star, such as a binary companion. 
      This new discovery, published in the journal Nature Astronomy, marks the first time that a white dwarf born from colliding stars has been identified by its ultraviolet spectrum. Prior to this study, six white dwarf merger products were discovered via carbon lines in their visible-light spectra.  All seven of these are part of a larger group that were found to be bluer than expected for their masses and ages from a study with ESA’s Gaia mission in 2019, with the evidence of mergers providing new insights into their formation history.
      Astronomers used Hubble’s Cosmic Origins Spectrograph to investigate a white dwarf called WD 0525+526. Located 128 light-years away, it is 20% more massive than the Sun. In visible light, the spectrum of WD 0525+526’s atmosphere resembled that of a typical white dwarf. However, Hubble’s ultraviolet spectrum revealed something unusual: evidence of carbon in the white dwarf’s atmosphere. 
      White dwarfs that form through the evolution of a single star have atmospheres composed of hydrogen and helium. The core of the white dwarf is typically composed mostly of carbon and oxygen or oxygen and neon, but a thick atmosphere usually prevents these elements from appearing in the white dwarf’s spectrum. 
      When carbon appears in the spectrum of a white dwarf, it can signal a more violent origin than the typical single-star scenario: the collision of two white dwarfs, or of a white dwarf and a subgiant star. Such a collision can burn away the hydrogen and helium atmospheres of the colliding stars, leaving behind a scant layer of hydrogen and helium around the merger remnant that allows carbon from the white dwarf’s core to float upward, where it can be detected.  
      WD 0525+526 is remarkable even within the small group of white dwarfs known to be the product of merging stars. With a temperature of almost 21,000 kelvins (37,000 degrees Fahrenheit) and a mass of 1.2 solar masses, WD 0525+526 is hotter and more massive than the other white dwarfs in this group.
      WD 0525+526’s extreme temperature posed something of a mystery for the team. For cooler white dwarfs, such as the six previously discovered merger products, a process called convection can mix carbon into the thin hydrogen-helium atmosphere. WD 0525+526 is too hot for convection to take place, however. Instead, the team determined a more subtle process called semi-convection brings a small amount of carbon up into WD 0525+526’s atmosphere. WD 0525+526 has the smallest amount of atmospheric carbon of any white dwarf known to result from a merger, about 100,000 times less than other merger remnants.
      The high temperature and low carbon abundance mean that identifying this white dwarf as the product of a merger would have been impossible without Hubble’s sensitivity to ultraviolet light. Spectral lines from elements heavier than helium, like carbon, become fainter at visible wavelengths for hotter white dwarfs, but these spectral signals remain bright in the ultraviolet, where Hubble is uniquely positioned to spot them.
      “Hubble’s Cosmic Origins Spectrograph is the only instrument that can obtain the superb quality ultraviolet spectroscopy that was required to detect the carbon in the atmosphere of this white dwarf,” said study lead Snehalata Sahu from the University of Warwick.
      Because WD 0525+526’s origin was revealed only once astronomers glimpsed its ultraviolet spectrum, it’s likely that other seemingly “normal” white dwarfs are actually the result of cosmic collisions — a possibility the team is excited to explore in the future.
      “We would like to extend our research on this topic by exploring how common carbon white dwarfs are among similar white dwarfs, and how many stellar mergers are hiding among the normal white dwarf family,” said study co-leader Antoine Bedrad from the University of Warwick. “That will be an important contribution to our understanding of white dwarf binaries, and the pathways to supernova explosions.”
      The Hubble Space Telescope has been operating for more than three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      To learn more about Hubble, visit: https://science.nasa.gov/hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      White Dwarf Merger Illustration
      This is an illustration of a white dwarf star merging into a red giant star. A bow shock forms as the dwarf plunges through the star’s outer atmosphere. The passage strips down the white dwarf’s outer layers, exposing an interior carbon core.


      Explore More
      Spectroscopy
      Studying light in detail allows astronomers to uncover the very nature of the objects that emit, absorb, or reflect light.


      Hubble Directly Measures Mass of Lone White Dwarf
      Astronomers using Hubble have for the first time directly measured the mass of a single, isolated white dwarf.


      Dead Star Caught Ripping Up Planetary System
      Astronomers have observed a white dwarf star that is consuming both rocky-metallic and icy material, the ingredients of planets.


      Water-rich Planetary Building Blocks Found Around White Dwarf
      Astronomers using Hubble found the building blocks of solid planets that are capable of having substantial amounts of water. 




      Share








      Details
      Last Updated Aug 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute
      Baltimore, Maryland
      Bethany Downer
      ESA/Hubble
      Garching, Germany
      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Stars The Universe White Dwarfs
      Related Links and Documents
      Science Paper: A hot white dwarf merger remnant revealed by an ultraviolet detection of carbon, PDF (23.45 MB)

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Images



      Hubble News


      View the full article
    • By NASA
      Left: Gigantic Jet Event from the International Space Station, taken by NASA Astronaut Nichole Ayers. (Credit: Ayers) Right: Sprite event appearing over a lightning strike, seen from space. This photo was taken by astronauts aboard the International Space Station during Expedition 44. Credit: NASA astronauts on board Expedition 44 Did you see that gorgeous photo NASA astronaut Nichole Ayers took on July 3, 2025? Originally thought to be a sprite, Ayers confirmed catching an even rarer form of a Transient Luminous Events (TLEs) — a gigantic jet.   
      “Nichole Ayers caught a rare and spectacular form of a TLE from the International Space Station — a gigantic jet,” said Dr. Burcu Kosar, Principal Investigator of the Spritacular project.  
      Gigantic jets are a powerful type of electrical discharge that extends from the top of a thunderstorm into the upper atmosphere. They are typically observed by chance — often spotted by airline passengers or captured unintentionally by ground-based cameras aimed at other phenomena. Gigantic jets appear when the turbulent conditions at towering thunderstorm tops allow for lightning to escape the thunderstorm, propagating upwards toward space. They create an electrical bridge between the tops of the clouds (~20 km) and the upper atmosphere (~100 km), depositing a significant amount of electrical charge. 
      Sprites, on the other hand, are one of the most commonly observed types of TLEs — brief, colorful flashes of light that occur high above thunderstorms in the mesosphere, around 50 miles (80 kilometers) above Earth’s surface. Unlike gigantic jets, which burst upward directly from thundercloud tops, sprites form independently, much higher in the atmosphere, following powerful lightning strikes. They usually appear as a reddish glow with intricate shapes resembling jellyfish, columns, or carrots and can span tens of kilometers across. Sprites may also be accompanied or preceded by other TLEs, such as Halos and ELVEs (Emissions of Light and Very Low Frequency perturbations due to Electromagnetic Pulse Sources), making them part of a larger and visually spectacular suite of high-altitude electrical activity. The world of Transient Luminous Events is a hidden zoo of atmospheric activity playing out above the storms. Have you captured an image of a jet, sprite, or other type of TLE? Submit your photos to Spritacular.org to help scientists study these fascinating night sky phenomena! 
      Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share








      Details
      Last Updated Aug 12, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      1 min read Snapshot Wisconsin Celebrates 10 Years and 100 Million Photos Collected!
      The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this…


      Article


      6 days ago
      4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms


      Article


      1 week ago
      2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes


      Article


      3 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...