Jump to content

NASA Celebrates Hispanic Heritage Month 2024


Recommended Posts

  • Publishers
Posted

In honor of Hispanic Heritage Month, we recognize Hispanic astronauts who have flown in space. The table below lists these individuals of various nationalities who have made significant contributions to their space programs. The first Hispanic astronauts completed short flights to a Soviet space station and aboard the space shuttle. In the past 23 years, many more have completed flights to the International Space Station and contributed to its assembly, operations, and research activities.  

Table of Hispanic astronauts who have flown in space
Table of Hispanic astronauts who have flown in space.

Arnaldo Tamayo Méndez of Cuba holds the title of the first person of Hispanic heritage to fly in space. He spent eight days aboard the Salyut-6 space station in September 1980 as part of the Soviet Union’s Interkosmos program to fly cosmonauts from friendly socialist countries. The first Hispanic to fly on the space shuttle, Payload Specialist Rodolfo Neri Vela of Mexico, also introduced tortillas to astronauts’ on board menus during his flight on STS-61B in November 1985. Tortillas continue to be a staple on the space station today, for everything from breakfast tacos, to burgers, sandwiches, and pizzas. Selected as an astronaut in 1980, Costa Rican-born Franklin R. Chang-Díaz holds the honor as the first Hispanic American in space. He flew in space a record-tying seven times, including one visit to the Russian space station Mir and one to the International Space Station.

Cuban cosmonaut Arnaldo Tamayo Méndez Rodolfo Neri Vela enjoys a trend-setting tortilla during the STS-61B mission NASA astronaut Franklin R. Chang-Díaz
Left: Portrait of Cuban cosmonaut Arnaldo Tamayo Méndez. Middle: Mexican payload specialist Rodolfo Neri Vela enjoys a trend-setting tortilla during the STS-61B mission. Right: Portrait of NASA astronaut Franklin R. Chang-Díaz.

Franklin R. Chang-Díaz

Chang-Díaz’s first flight, STS-61C aboard space shuttle Columbia, took place in January 1986, a six-day flight to deploy a communications satellite and to remotely observe Halley’s comet. The crew included two future NASA administrators, NASA astronauts Charles F. Bolden and U.S. Senator (D-FL) C. William “Bill” Nelson. The flight landed just 10 days before the tragic loss of space shuttle Challenger. His next mission, STS 34 aboard Atlantis, in October 1989 saw the deployment of the Galileo spacecraft to explore Jupiter with an orbiter and an atmospheric probe. Chang-Díaz launched on his third mission, STS 46 in July 1992, an eight-day flight aboard Atlantis to test fly the first Tethered Satellite System (TSS-1).

Franklin R. Chang-Díaz, center, the first Hispanic American astronaut, with his fellow STS-61C crew members Chang-Díaz, and the STS-34 crew Chang-Díaz, with the STS-46 crew
Left: Franklin R. Chang-Díaz, center, the first Hispanic American astronaut, with his fellow STS-61C crew members. Middle: Chang-Díaz, center, and the STS-34 crew. Right: Chang-Díaz, upper right, with the STS-46 crew.

Chang-Díaz returned to space for his fourth mission in January 1994 aboard Discovery. The eight-day STS-60 flight comprised the first flight in the Shuttle-Mir program, with Russian cosmonaut Sergey K. Krikalev a member of the crew. Chang-Díaz launched on his fifth flight in February 1996, the 16-day STS-75 mission aboard Columbia to refly the TSS. On his sixth mission in June 1998, the STS-91 crew docked Discovery with the Russian space station Mir and returned astronaut Andrew S.W. Thomas to earth, the final Shuttle-Mir mission.

Franklin R. Chang-Díaz, with the STS-60 crew Chang-Díaz with his STS-75 crew mates Chang-Díaz, with the STS-91 and Mir 25 crews
Left: Franklin R. Chang-Díaz, lower left, with the STS-60 crew. Middle: Chang-Díaz, left, with his STS-75 crew mates. Right: Chang-Díaz, with the STS-91 and Mir 25 crews.

During his record-tying seventh trip into space, Chang-Díaz made his only visit to the space station. The main goals of Endeavour’s STS-111 mission in June 2002 included the exchange of the Expedition 4 and 5 crews and the resupply of the station using the Leonardo Multi-Purpose Logistics Module (MPLM). Two new research facilities rode in the MPLM, the fifth Expedite the Processing of Experiments to the Space Station (EXPRESS) rack and the Microgravity Sciences Glovebox. Chang-Díaz completed three spacewalks with his fellow mission specialist, French astronaut Philippe Perrin, to install the Mobile Base System portion of the Canadarm2’s remote manipulator system and perform maintenance tasks on the station.

NASA astronaut Franklin R. Chang-Díaz with his STS-111 crewmates and the Expedition 4 and 5 crews Chang-Díaz during the first STS-111 spacewalk Chang-Díaz in Endeavour’s middeck following undocking from the space station
Left: NASA astronaut Franklin R. Chang-Díaz, left of center, with his STS-111 crewmates and the Expedition 4 and 5 crews. Middle: Chang-Díaz during the first STS-111 spacewalk. Right: Chang-Díaz in Endeavour’s middeck following undocking from the space station.

Sidney M. Gutierrez

NASA selected New Mexico native Sidney M. Gutierrez as an astronaut in 1984. On his first mission in June 1991, he served as the pilot of Columbia on the STS-40 Spacelab Life Sciences-1 mission, a nine-day flight dedicated to investigating the responses of the human body to weightlessness. He also served as a test subject for several of the experiments. During his second mission in April 1994, Gutierrez served as the commander of STS-59, the Space Radar Laboratory-1 flight, an 11-day mission aboard Endeavour. The payload included a synthetic aperture imaging radar.

NASA astronaut Sidney M. Gutierrez with his STS-40 crew mates Gutierrez with the STS-59 crew.
Left: NASA astronaut Sidney M. Gutierrez, center, with his STS-40 crew mates. Right: Gutierrez, center, with the STS-59 crew.

Ellen Ochoa

Selected as the first female Hispanic astronaut in 1990, Ellen Ochoa completed four spaceflights and then served as the first Hispanic director of NASA’s Johnson Space Center in Houston. On her first mission in April 1993, she served as a mission specialist on the nine-day STS-56 flight, the second Atmospheric Laboratory for Applications and Science (ATLAS) mission aboard Discovery. An accomplished flautist, she played her flute during the flight. On her second flight, STS-66 in March 1994, Ochoa flew aboard Atlantis and operated the experiments of the ATLAS-3 payload during the 11-day mission.

Ellen Ochoa and the rest of the STS-56 crew Ochoa plays the flute on Discovery’s flight deck Ochoa and the rest of the STS-66 crew
Left: Ellen Ochoa, top left, and the rest of the STS-56 crew. Middle: Ochoa plays the flute on Discovery’s flight deck. Right: Ochoa, top left, and the rest of the STS-66 crew.

Ochoa holds the distinction as the first Hispanic astronaut to visit the space station, making her first visit in May 1999 as a mission specialist aboard Discovery’s 10-day STS-96 mission. The goals of the mission – only the second shuttle flight to the station that, at the time, comprised only two modules – included the transfer of two tons of logistics to the station, launched inside a Spacehab double module, and the delivery of the Russian Strela cargo crane.

The space station as seen from STS-96 NASA astronaut Ellen Ochoa with the STS-96 crew in the Unity Node 1 Ochoa with fellow STS-96 crewmembers Julie Payette of the Canadian Space Agency in the Zarya module.
Left: The space station as seen from STS-96. Middle: NASA astronaut Ellen Ochoa, lower right, with the STS-96 crew in the Unity Node 1. Right: Ochoa, bottom, with fellow STS-96 crewmembers Julie Payette of the Canadian Space Agency in the Zarya module.

Ochoa returned to a much-enlarged space station aboard space shuttle Atlantis in April 2002 during the STS-110 mission that delivered the 13-ton S0 truss – the center segment section to which future truss segments were later attached. Ochoa operated the Space Station Remote Manipulator System (SSRMS), also known as Canadarm2, to lift the S0 truss from the shuttle’s payload bay and attach it atop the Destiny module. The S0 truss also contained the Mobile Transporter to allow the SSRMS to translate up and down the trusses. Ochoa was named as JSC’s deputy director in 2007, then as JSC’s first Hispanic director in 2013. She served in that position until her retirement from NASA in 2018.

 NASA astronaut Ellen Ochoa operating Canadarm2 The space station as seen from the departing STS-110, showing the S0 truss mounted on Destiny Portrait of Ellen Ochoa as director of NASA’s Johnson Space Center in Houston
Left: NASA astronaut Ellen Ochoa operating Canadarm2 in the Destiny module. Middle: The space station as seen from the departing STS-110, showing the S0 truss mounted on Destiny. Right: Portrait of Ochoa as director of NASA’s Johnson Space Center in Houston.

Michael E. Lopez-Alegria

NASA selected Michael E. “LA” Lopez-Alegria, born in Madrid, Spain, as an astronaut in 1992. On his first spaceflight, he served as a mission specialist on STS-73, the second flight of the United States Microgravity Laboratory. The 16-day mission aboard Columbia in October 1995 included 37 investigations supported by 11 facilities, with the seven-member crew working around the clock in two shifts in a Spacelab module.

Michael E. Lopez-Alegria with the rest of the STS-73 crew inside the Spacelab module. Lopez-Alegria working on biological experiment in the Spacelab module
Left: Michael E. Lopez-Alegria, center, with the rest of the STS-73 crew inside the Spacelab module. Right: Lopez-Alegria working on biological experiment in the Spacelab module.

Lopez-Alegria served as a mission specialist on STS-92 during his first visit to the space station. He and his six crewmates launched aboard Discovery in  October 2000, the 100th launch of the program and the last to visit an unoccupied station. At the time, the station comprised just three modules. During the mission, the STS-92 crew installed the Z1 truss atop the Unity module, four Control Moment Gyros, and the third Pressurized Mating Adaptor. The Z1 truss  enabled the addition of solar arrays and radiators on the subsequent assembly flight and also contained high-rate communications equipment including the first Space-to-Ground antenna. Lopez-Alegria participated in two of the mission’s four spacewalks with Peter J. “Jeff” Wisoff to complete the assembly tasks. During their last spacewalk, the two conducted the first flight evaluation at the station of the Simplified Aid for EVA Rescue (SAFER), a propulsive backpack to be used by astronauts should they become detached from the spacecraft. The STS-92 crew left the station ready for its first inhabitants, and indeed less than two weeks later, the first Expedition crew arrived to begin permanent residency in low Earth orbit.

NASA astronaut Michael E. Lopez-Alegria working outside the space station during STS-92 Lopez-Alegria tests the Simplified Aid for EVA Rescue as fellow NASA astronaut Peter J. “Jeff” Wisoff looks on The space station as seen from Discovery shortly after undocking, showing the Z1 Truss with the Space-to-Ground Antenna at top and the third Pressurized Mating Adaptor at bottom.
Left: NASA astronaut Michael E. Lopez-Alegria working outside the space station during STS-92. Middle: Lopez-Alegria, left, tests the Simplified Aid for EVA Rescue as fellow NASA astronaut Peter J. “Jeff” Wisoff looks on. Right: The space station as seen from Discovery shortly after undocking, showing the Z1 Truss with the Space-to-Ground Antenna at top and the third Pressurized Mating Adaptor at bottom.

For his third flight into space, Lopez-Alegria returned to the station in November 2002 during the STS-113 mission, the facility now permanently occupied and having grown significantly in the intervening two years. The primary tasks for the STS-113 crew included adding the P1 truss on the station’s port side, installing the Crew Equipment Translation Aid (CETA) cart, and assisting in the exchange between the Expedition 5 and 6 crews. Lopez-Alegria and fellow STS-113 mission specialist John B. Harrington conducted three spacewalks to complete the installation of the P1 truss and the CETA cart. After STS-113, assembly of the station came to a temporary halt following the Feb. 1, 2003, Columbia accident, and the subsequent grounding of the space shuttle fleet. Flights did not resume until September 2006.

NASA astronaut Michael E. Lopez-Alegria during the first STS-113 spacewalk. Lopez-Alegria, second from right in the middle row, posing in the Destiny module with his STS-113 crewmates, as well as the Expedition 5 and 6 crews The space station as seen by the departing STS-113 crew, with the newly installed P1 truss visible at right
Left: NASA astronaut Michael E. Lopez-Alegria during the first STS-113 spacewalk.  Middle: Lopez-Alegria, second from right in the middle row, posing in the Destiny module with his STS-113 crewmates, as well as the Expedition 5 and 6 crews. Right: The space station as seen by the departing STS-113 crew, with the newly installed P1 truss visible at right.

Lopez-Alegria returned to the space station again shortly after assembly resumed. For his fourth spaceflight, he launched aboard Soyuz TMA9 in September 2006, from the Baikonur Cosmodrome in Kazakhstan,. Mikhail V. Tyurin of Roscosmos accompanied him during the 215-day mission, to that time the longest space station expedition, was Mikhail V. Tyurin of Roscosmos. European Space Agency (ESA) astronaut Thomas A. Reiter, onboard the station since July 2006, became part of the Expedition 14 crew. As Commander of Expedition 14, Lopez-Alegria oversaw one of the most complex set of activities in the assembly of the station – the reconfiguration of its power and cooling systems. A week before his arrival, the STS-115 mission had delivered the second set of solar arrays to the station as part of the P3/P4 truss segment, positioning them outboard of the P1 segment. As part of the reconfiguration, the port side P6 array mounted atop the Z1 truss needed to be retracted to prevent interference with the rotation of the new arrays, a task that was completed during the visiting STS-116 mission in December that also added the P5 short spacer to the port side truss. That mission brought NASA astronaut Sunita L. “Suni” Williams to the station as a new addition to Expedition 14 and returned Reiter back to Earth. During Expedition 14, Lopez-Alegria took part in five spacewalks, two in Orlan spacesuits with Tyurin to conduct work on the outside of the Russian segment and three in American spacesuits, with Williams to reconfigure the cooling system of the U.S. segment. He accumulated a total of 67 hours and 40 minutes over 10 spacewalks – still the record among American astronauts. Lopez-Alegria also conducted a variety of scientific experiments.

Space station configuration when NASA astronaut Michael E. Lopez-Alegria arrived in September 2006 Lopez-Alegria, back row middle, with STS-116 and Expedition 14 crew members Celebrating the holidays aboard the space station
Left: Space station configuration when NASA astronaut Michael E. Lopez-Alegria arrived in September 2006. Middle: Lopez-Alegria, back row middle, with STS-116 and Expedition 14 crew members. Right: Celebrating the holidays aboard the space station.

NASA astronaut Michael E. Lopez-Alegria conducting a session of the Canadian TRAC experiment in the Destiny module Michael E. Lopez-Alegria conducts maintenance on the exterior of the Russian segment The space station’s configuration at the end of Lopez-Alegria’s mission
Left: NASA astronaut Michael E. Lopez-Alegria conducting a session of the Canadian TRAC experiment in the Destiny module. Middle: In an Orlan suit, Lopez-Alegria conducts maintenance on the exterior of the Russian segment. Right: The space station’s configuration at the end of Lopez-Alegria’s mission – note the retracted P6 solar array.

Lopez-Alegria retired from NASA in 2012, joining Axiom Space shortly thereafter. In April 2022, he commanded the Ax-1 mission, the first commercial astronaut mission to the space station. He and his three crewmates spent 17 days aboard, conducting a variety of experiments. Lopez-Alegria returned to space as commander of the Ax-3 mission in January 2024. He and his three multi-national crewmates spent 22 days aboard the space station conducting numerous experiments. Across his six missions, Lopez-Alegria accumulated a total of 297 days in space.

Axiom astronaut Michael E. Lopez-Alegria floats into the space station during the Ax-1 mission Lopez-Alegria and the rest of the Ax-1 crew. The 11 crew members aboard the space station during the Ax-1 mission, with Lopez-Alegria at far right.
Left: Axiom Space astronaut Michael E. Lopez-Alegria floats into the space station during the Ax-1 mission.
Middle: Lopez-Alegria, second from right, and the rest of the Ax-1 crew. Right: The 11 crew members
aboard the space station during the Ax-1 mission, with Lopez-Alegria at far right.

Axiom Space astronaut Michael E. Lopez-Alegria answers questions from the space station’s Cupola during the Ax-3 mission Lopez-Alegria, second from left, and the rest of the Ax-3 crew The 11 members of the Expedition 70 and Ax-3 crews, with Lopez-Alegria at far left
Left: Axiom Space astronaut Michael E. Lopez-Alegria answers questions from the space station’s Cupola during the Ax-3 mission. Middle: Lopez-Alegria, second from left, and the rest of the Ax-3 crew. Right: The 11 members of the Expedition 70 and Ax-3 crews, with Lopez-Alegria at far left.

Carlos I. Noriega

In 1994, NASA selected Carlos I. Noriega as the first Peruvian-born astronaut. On his first spaceflight in May 1997, he served as a mission specialist aboard STS-84, the sixth Shuttle-Mir docking mission. During the nine-day flight, the crew resupplied the Mir space station, brought NASA astronaut C. Michael Foale to the Russian outpost, and returned Jerry M. Linenger to Earth.

Carlos I. Noriega sets up an experiment during the STS-84 mission Noriega working on an experiment in the Spacehab module The 10 members of the STS-84 and Mir resident crew, with Noriega
Left: Carlos I. Noriega sets up an experiment during the STS-84 mission. Middle: Noriega working on an experiment in the Spacecab module. Right: The 10 members of the STS-84 and Mir resident crew, with Noriega at upper right.

In December 2000, Noriega launched on his second mission, aboard Endeavour with his four crewmates on STS-97, their primary goal to install the P6 truss segment with the first set of solar arrays and radiators atop the Z1 truss. STS-97 marked the first time a shuttle visited the station after its occupancy began, but given the busy spacewalk schedule, the hatches between the two vehicles were only open for 24 hours. Noriega and fellow mission specialist Joseph R. Tanner conducted three spacewalks to complete the P6 installation and other assembly tasks. The new solar arrays generated enough power for the arrival of the U.S. laboratory module Destiny early in 2001 and the start of intensive research aboard the space station.

NASA astronaut Carlos I. Noriega waves to the camera as he installs the P6 truss and solar arrays. Noriega with the STS-97 and Expedition 1 crews in the Zarya Service Module. The space station as seen from the departing STS-97 showing the newly deployed P6 solar arrays.
Left: NASA astronaut Carlos I. Noriega waves to the camera as he installs the P6 truss and solar arrays. Middle: Noriega, center, with the STS-97 and Expedition 1 crews in the Zarya Service Module. Right: The space station as seen from the departing STS-97 showing the newly deployed P6 solar arrays.

Pedro Duque

The European Space Agency (ESA) selected Pedro Duque, born in Madrid, Spain, as an astronaut in 1992. Four years later, he joined NASA’s astronaut class of 1996 in training and two years later certified as a mission specialist. His first launch into space took place in October 1998 on Discovery’s STS-95 mission, the nine-day flight that saw astronaut John H. Glenn’s return to space. Duque returned to space in October 2003 aboard Soyuz TMA3, conducting experiments aboard the space station as part of his Cervantes visiting mission. He returned to Earth 10 days later aboard Soyuz TMA2.

Spanish astronaut Pedro Duque, lower left, representing the European Space Agency, with his STS-95 crewmates Duque conducting an experiment in the Microgravity Science Glovebox aboard the space station Duque with his Expedition 7 and 8 crewmates
Left: Spanish astronaut Pedro Duque, lower left, representing the European Space Agency, with his STS-95 crewmates. Middle: Duque conducting an experiment in the Microgravity Science Glovebox aboard the space station. Right: Duque, center, with his Expedition 7 and 8 crewmates.

Marcos C. Pontes

The Brazilian Space Agency selected Marcos C. Pontes as an astronaut in 1998. He trained with NASA’s astronaut class of 1998 and certified as a mission specialist two years later. Pontes made his one and only spaceflight in March 2006 aboard Soyuz TMA8, carrying out eight experiments. He returned to Earth 10 days later aboard Soyuz TMA7.

Brazilian astronaut Marcos Pontes, center at rear, with his Expedition 12 and 13 crewmates Pontes works on an experiment in the Destiny Laboratory Module Pontes at work on an experiment in the Russian Zvezda module.
Left: Brazilian astronaut Marcos Pontes, center at rear, with his Expedition 12 and 13 crewmates. Middle: Pontes works on an experiment in the Destiny Laboratory Module. Right: Pontes at work on an experiment in the Russian Zvezda module.

John D. “Danny” Olivas

Selected as a member of NASA’s Astronaut Class of 1998, John D. “Danny” Olivas visited the space station on two occasions as a shuttle mission specialist. His first visit took place aboard Atlantis during the STS-117 mission in June 2007. During the flight, Olivas and fellow mission specialist James F. Reilly conducted two of the four spacewalks to install the S3/S4 truss segment that included the third set of solar arrays. To prevent interfering with the rotation of the new arrays, the crew retracted the starboard P6 array mounted atop the Z1 truss. The STS-117 mission also served as a crew exchange flight, with NASA astronaut Clayton C. Anderson replacing Suni Williams as a member of Expedition 15.

NASA astronaut John D. “Danny” Olivas during an STS-117 spacewalk working on the S3/S4 truss installation. Olivas, back row at right, with the STS-117 and Expedition 15 crews The space station as seen by the departing STS-117 crew, showing the new set of starboard solar arrays at right.
Left: NASA astronaut John D. “Danny” Olivas during an STS-117 spacewalk working on the S3/S4 truss installation. Middle: Olivas, back row at right, with the STS-117 and Expedition 15 crews. Right: The space station as seen by the departing STS-117 crew, showing the new set of starboard solar arrays at right.

On his return to the station, Olivas found it a bit more crowded – three months earlier, the permanent crew aboard the station had expanded from three to six. He and his crewmates launched aboard Discovery on the STS-128 mission in August 2009. The shuttle’s payload bay contained the Leonardo MPLM bringing supplies to help maintain a 6-person crew on the space station, including three systems racks: a crew quarters, an Air Revitalization System  rack, and the Combined Operational Load Bearing External Resistance Treadmill (COLBERT) for crew exercise – as well as three research racks – the Fluid Integrated Rack , the Materials Science Research Rack, and the second Minus Eighty-degree Laboratory Freezer for ISS (MELFI). Olivas participated in three spacewalks to replace the Ammonia Tank Assembly  on the P1 truss and to retrieve two experiments from the European Columbus module’s External Payload Facility. STS-128 also completed the final shuttle-based crew exchange, with NASA astronauts Nicole P. Stott and Timothy L. Kopra exchanging places as Expedition 20 crewmembers.

NASA astronaut John D. “Danny” Olivas poses during spacewalk work on the Ammonia Tank Assembly. NASA astronaut John D. “Danny” Olivas eating a chocolate and peanut butter snack NASA astronaut John D. “Danny” Olivas, at center, with the STS-128 and Expedition 20 crews
Left:NASA astronaut John D. “Danny” Olivas poses during spacewalk work on the Ammonia Tank Assembly. Middle: Olivas eating a chocolate and peanut butter snack. Right: Olivas, at center, with the STS-128 and Expedition 20 crews.

George D. Zamka

Selected as a NASA astronaut in 1998, George D. Zamka completed his first space flight as pilot on Discovery’s STS-120 mission. Launching in October 2007, Zamka and his crewmates brought the Harmony Node 2 module to the station, temporarily berthing it on the Unity Node 1’s port side until the Expedition 16 crew relocated it to Destiny’s forward hatch. In its final location, Harmony enabled the later installation of the European and Japanese elements. The crew also relocated the P6 truss segment from atop Z1 to the outboard port truss. During the redeployment of the P6 solar arrays, one of the arrays developed a tear that required repair using a cufflink-like device to sew up the gap in the panel. STS-120 also conducted a crew exchange, with NASA astronauts Daniel M. Tani and Clay Anderson exchanging places as members of Expedition 16. As the STS-120 pilot, Zamka completed the undocking from the station and the departure fly-around maneuver.

NASA astronaut George D. Zamka holding the cufflink device used to repair the torn solar array Zamka, lower right, with the STS-120 and Expedition 16 crews The space station as seen from STS-120 departing, showing the newly delivered Harmony Node 2 module
Left: NASA astronaut George D. Zamka holding the cufflink device used to repair the torn solar array. Middle: Zamka, lower right, with the STS-120 and Expedition 16 crews. Right: The space station as seen from STS-120 departing, showing the newly delivered Harmony Node 2 module temporarily berthed at the Unity Node 1 and the relocated and redeployed P6 truss segment and solar arrays at left.

When he returned to the orbiting lab in February 2010, Zamka did so as commander of space shuttle Endeavour’s STS-130 mission. After guiding the shuttle to a successful docking with the station, Zamka and his crewmates, along with the Expedition 22 crew, installed the Tranquility Node 3 module to Unity’s port side and activated the new element. The new module provided accommodations for life support and habitation facilities for the station’s six-person crew. The crew removed the Cupola from its launch position at the end of Tranquility and relocated it to the module’s Earth-facing port. The Cupola’s six trapezoidal and one circular center window provide crews not only visibility for approaching visiting vehicles, but also spectacular views of their home planet passing by below. 

NASA astronaut George D. Zamka peering through one of the Cupola’s windows Zamka with the STS-130 and Expedition 22 crews. The space station as seen from the departing STS-130, showing the Tranquility Node 3 and Cupola berthed at the Unity Node 1, left of center.
Left: NASA astronaut George D. Zamka peering through one of the Cupola’s windows. Middle: Zamka, front row second from right, with the STS-130 and Expedition 22 crews. Right: The space station as seem from the departing STS-130, showing the Tranquility Node 3 and Cupola berthed at the Unity Node 1, left of center.

Joseph M. “Joe” Acaba

Joseph M. “Joe” Acaba was selected in 2004 as part of NASA’s Educator Astronaut Program and qualified as a mission specialist. His first flight into space was aboard STS-119 in March 2009. Discovery brought up the S6 final truss segment with the fourth and final set of solar arrays, bringing the U.S. segment of the station’s useable power generating capability between 42 and 60 kilowatts. Acaba completed two of the mission’s three spacewalks, one with fellow mission specialist Steven R. Swanson and the other with fellow educator-astronaut and mission specialist Richard R. “Ricky” Arnold. During the STS-119 mission, Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) replaced NASA astronaut Sandra H. Magnus as a member of the Expedition 18 crew.

NASA astronaut Joseph M. Acaba during the third STS-119 spacewalk Acaba with the STS-119 and Expedition 18 crews The space station as seen from the departing STS-119, with the newly added S6 truss segment and solar arrays
Left: NASA astronaut Joseph M. Acaba during the third STS-119 spacewalk. Middle: Acaba, front row at right, with the STS-119 and Expedition 18 crews. Right: The space station as seen from the departing STS-119, with the newly added S6 truss segment and solar arrays, at right.

For his second visit to the station, Acaba stayed for 125 days as part of Expeditions 31 and 32, launching in May 2012 from Kazakhstan aboard Soyuz TMA-04M. A week after arriving, Acaba and his crewmates welcomed the first commercial vehicle to dock with the space station, the SpaceX Dragon cargo resupply vehicle on its Demo-2 mission carrying food, water, scientific experiments and other supplies. The Expedition 31 crew loaded the Dragon spacecraft with cargo and experiment samples for return to Earth. The crew observed and photographed a rare celestial event, a transit of Venus across the Sun on June 5. In addition to conducting numerous science experiments, Acaba helped fire prevention icon Smokey the Bear celebrate his 68th birthday.

NASA astronaut Joseph M. Acaba with his Expedition 31 crewmates inside the SpaceX Dragon resupply vehicle NASA astronaut Joseph M. Acaba running on the COLBERT treadmill. NASA astronaut Joseph M. Acaba refracted in a globule of water.
Left: NASA astronaut Joseph M. Acaba, top right, with his Expedition 31 crewmates inside the SpaceX Dragon resupply vehicle. Middle: Acaba running on the COLBERT treadmill. Right: Acaba refracted in a globule of water.

NASA astronaut Joseph M. Acaba drawing a blood sample from Akihiko Hoshide of the Japan Aerospace Exploration Agency NASA astronaut Joseph M. Acaba with a toy Smokey the Bear in the Cupola to help celebrate the forest fire prevention icon’s 68th birthday NASA astronaut Joseph M. Acaba, lower right, with this Expedition 32 crewmates.
Left: NASA astronaut Joseph M. Acaba, right, drawing a blood sample from Akihiko Hoshide of the Japan Aerospace Exploration Agency. Middle: Acaba with a toy Smokey the Bear in the Cupola to help celebrate the forest fire prevention icon’s 68th birthday. Right: Acaba, lower right, with this Expedition 32 crewmates.

Acaba returned to the space station five years later as a member of Expedition 53 and 54, launching in September 2017, aboard Soyuz MS-06 Acaba joined NASA astronaut Randolph J. “Randy” Bresnik for a nearly seven-hour spacewalk to lubricate the newly installed replacement Latching End Effector on the SSRMS. Acaba continued with the research program and celebrated his Puerto Rican heritage with several events. He returned to Earth after a 168-day flight. Over his three missions, Acaba accumulated 306 days in space and nearly 20 hours in spacewalk time. Since February 2023, he has served as the chief of the astronaut office.

NASA astronaut Joseph M. Acaba conducting an experiment in the Microgravity Sciences Glovebox. Acaba showing Puerto Rico pride During a spacewalk, Acaba is lubricating the Candarm2 Latching End Effector Acaba with his Expedition 53 crewmates.
Left: NASA astronaut Joseph M. Acaba conducting an experiment in the Microgravity Sciences Glovebox. Middle left: In the Cupola, Acaba showing Puerto Rico pride. Middle right: During a spacewalk, Acaba is lubricating the Candarm2 Latching End Effector. Right: Acaba, left, with his Expedition 53 crewmates.

NASA astronaut Joseph M. Acaba working with the Biological Research in Canisters experiment. Acaba speaking with the Puerto Rico Institute of Robotics. During the holidays, Acaba participating in a parranda by video hhm-2023-82-acaba-exp-54-crew-photo-iss0
Left: NASA astronaut Joseph M. Acaba working with the Biological Research in Canisters experiment. Middle left: Acaba speaking with the Puerto Rico Institute of Robotics. Middle right: During the holidays, Acaba participating in a parranda by video. Right: Acaba, upper left, with his Expedition 54 crewmates.

José M. Hernández

Selected in 2004 as a NASA astronaut, José M. Hernández made his single visit to the space station during the STS-128 mission. Launched aboard space shuttle Discovery in August 2009, Hernández operated both the shuttle and station robotic arms to move the Leonardo MPLM back and forth and translate astronauts during the mission’s three spacewalks. He participated in the transfer and installation of the three systems racks and the three research racks aboard the orbiting laboratory. STS-128 also completed the final shuttle-based crew exchange, with Stott replacing Kopra as an Expedition 20 crew member. In collaboration with Amazon Studios, NASA is helping chronicle Hernández’ life and career through the film “A Million Miles Away,” telling the story of his journey from migrant farmer to NASA space explorer.

NASA astronaut José M. Hernández operating the shuttle’s robotic arm to transfer the Leonardo Multipurpose Logistics Module (MPLM) to the station. NASA astronaut José M. Hernández operating the station’s robotic arm to return the MPLM to the shuttle’s payload bay. NASA astronaut José M. Hernández with the STS-128 and Expedition 20 crews
Left:  NASA astronaut José M. Hernández operating the shuttle’s robotic arm to transfer the Leonardo Multipurpose Logistics Module (MPLM) to the station. Middle: Hernández operating the station’s robotic arm to return the MPLM to the shuttle’s payload bay. Right: Hernández, front row center, with the STS-128 and Expedition 20 crews.

Serena M. Auñón-Chancellor

Serena M. Auñón-Chancellor was selected as a member of NASA’s Astronaut Class of 2009 and made her first spaceflight nine years later. She launched aboard Soyuz MS-09 in June 2018and began work on the more than 300 research investigations she carried out during her stay aboard the orbiting laboratory. Auñón-Chancellor returned to Earth after completing a 197-day flight.

NASA astronaut Serena M. Auñón-Chancellor conducting the AngieX Cancer Therapy experiment in the Microgravity Sciences Glovebox. NASA astronaut Serena M. Auñón-Chancellor completing a session of the Eye Exam NASA astronaut Serena M. Auñón-Chancellor posing with her Expedition 56 crewmates in the Harmony Node 2 module.
Left: NASA astronaut Serena M. Auñón-Chancellor conducting the AngieX Cancer Therapy experiment in the Microgravity Sciences Glovebox. Middle: Auñón-Chancellor completing a session of the Eye Exam – Fundoscope experiment to help understand vision changes in microgravity. Right: Auñón-Chancellor, top, posing with her Expedition 56 crewmates in the Harmony Node 2 module.

NASA astronaut Serena M. Auñón-Chancellor working on the BioServe Protein Crystalography-1 experiment Expedition 57 crew members in their best Halloween outfits NASA astronaut Serena M. Auñón-Chancellor and her Expedition 57 crewmates in the Destiny module
Left: NASA astronaut Serena M. Auñón-Chancellor working on the BioServe Protein Crystalography-1 experiment. Middle: Expedition 57 crew members in their best Halloween outfits – Sergei V. Prokopiev of Roscosmos, left, as Elvis, ESA astronaut Alexander Gerst as Darth Vader, and Auñón-Chancellor as a mad scientist. Right: Auñón-Chancellor and her Expedition 57 crewmates in the Destiny module.

Francisco “Frank” C. Rubio

Selected as an astronaut by NASA in 2017, Dr. Francisco “Frank” C. Rubio began his first trip to space in September 2022, with Russian cosmonauts Sergei V. Prokopyev and Dmitri A. Petelin aboard Soyuz MS-22, for a planned six-month stay aboard the space station. A leak aboard their Soyuz MS-22 spacecraft in December resulted in the loss of its coolant, and they could no longer rely on it to return to Earth. Roscosmos sent the replacement Soyuz MS-23 to the station in February 2023. The incident extended their mission to over one year. On Sept. 11, Rubio broke the record of 355 days for the longest single flight by an American astronaut, set by Mark T. Vande Hei in March 2022. Prokopyev, Petelin, and Rubio landed on Sept. 27 after a 371-day flight, the longest aboard the space station up to that time.

NASA astronaut Francisco “Frank” C. Rubio receives his gold astronaut pin from Japan Aerospace Exploration Agency astronaut and fellow Expedition 68 crew member Koichi Wakata hhm-2023-93-rubio-exp-68-nov-15-2022-iss NASA astronaut Francisco “Frank” C. Rubio with Russian cosmonauts Sergey V. Prokopyev and Dmitri A. Petelin with a cake with “356” written on it to signify they surpassed the previous record
of 355 days as the longest flight aboard the space station.
Left: Shortly after arriving at the space station, NASA astronaut Francisco “Frank” C. Rubio receives his gold astronaut pin from Japan Aerospace Exploration Agency astronaut and fellow Expedition 68 crew member Koichi Wakata. Middle: Rubio during one of his two spacewalks. Right: Rubio, left, with Russian cosmonauts Sergey V. Prokopyev and Dmitri A. Petelin with a cake with “356” written on it to signify they surpassed the previous record of 355 days as the longest flight aboard the space station up to that time.

To be continued…

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Northrop Grumman’s Cygnus spacecraft, atop a SpaceX Falcon 9 rocket, soars from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Aug. 4, 2024, for Northrop Grumman’s 21st Commercial Resupply Services mission for NASA.Credit: SpaceX Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. A Northrop Grumman Cygnus spacecraft will launch to the orbital laboratory on a SpaceX Falcon 9 rocket for NASA.
      The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23. Liftoff is targeted for mid-September from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Following launch, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus, and the spacecraft will be installed robotically to the Unity module’s Earth-facing port for cargo unloading. The spacecraft will remain at the space station for more than two months.
      Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Wednesday, Aug. 27. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
      This is the 23rd spacecraft built to deliver goods to the International Space Station. In March, NASA and Northrop Grumman moved up the company’s Commercial Resupply Services-23 mission to September following damage to the Cygnus Pressurized Cargo Module during shipping for the company’s Commercial Resupply Services-22 flight.
      Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      In addition to food, supplies, and equipment for the crew, Cygnus will deliver research, including materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. Cygnus also will deliver a specialized UV light system to prevent biofilm growth and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For almost 25 years, humans have continuously lived and worked aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon and Mars.
      Learn more about NASA’s commercial resupply missions at:
      https://www.nasa.gov/station
      -end-
      Josh Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Steven Siceloff
      Kennedy Space Center, Fla.
      321-876-2468
      steven.p.siceloff@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Aug 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Resupply International Space Station (ISS) ISS Research Northrop Grumman Commercial Resupply View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NuCLEUS, developed by Interstellar Lab, is an autonomous system that grows microgreens, vegetables, and more for astronauts to eat in space.Interstellar Lab NASA invests in technologies that have the potential to revolutionize space exploration, including the way astronauts live in space. Through the Deep Space Food Challenge, NASA, in partnership with CSA (Canadian Space Agency), sought novel food production systems that could provide long-duration human space exploration missions with safe, nutritious, and tasty food. Three winners selected last summer are now taking their technology to new heights – figuratively and literally – through commercial partnerships. 
      Interstellar Lab of Merritt Island, Florida, won the challenge’s $750,000 grand prize for its food production system NuCLEUS (Nutritional Closed-Loop Eco-Unit System), by demonstrating an autonomous operation growing microgreens, vegetables, and mushrooms, as well as sustaining insects for use in an astronaut’s diet. To address the requirements of the NASA challenge, NuCLEUS includes an irrigation system that sustains crop growth with minimal human intervention. This end-to-end system supplies fresh ingredients to support astronauts’ health and happiness, with an eye toward what the future of dining on deep space missions to Mars and the Moon may look like. 
      Since the close of the challenge, Interstellar Lab has partnered with aerospace company Vast to integrate a spinoff of NuCLEUS, called Eden 1.0, on Haven-1, a planned commercial space station. Eden 1.0 is a plant growth unit designed to conduct research on plants in a microgravity environment using functions directly stemming from NuCLEUS.  
      “The NASA Deep Space Food Challenge was a pivotal catalyst for Interstellar Lab, driving us to refine our NuCLEUS system and directly shaping the development of Eden 1.0, setting the stage for breakthroughs in plant growth research to sustain life both in space and on Earth,” said Barbara Belvisi, founder and CEO of Interstellar Lab. 
      Fuanyi Fobellah, one of the “Simunauts” from The Ohio State University who tested food production technologies as part of the Deep Space Food Challenge, removes a cooked omelet from the SATED appliance.NASA/Savannah Bullard Team SATED (Safe Appliance, Tidy, Efficient & Delicious) of Boulder, Colorado, earned a $250,000 second prize for its namesake appliance, which creates an artificial gravitational force that presses food ingredients against its heated inner surface for cooking. The technology was developed by Jim Sears, who entered the contest as a one-person team and has since founded the small business SATED Space LLC.  
      At the challenge finale event, the technology was introduced to the team of world-renowned chef and restaurant owner, José Andrés. The SATED technology is undergoing testing with the José Andrés Group, which could add to existing space food recipes that include lemon cake, pizza, and quiche. The SATED team also is exploring partnerships to expand the list of ingredients compatible with the appliance, such as synthetic cooking oils safe for space. 
      Delicious food was a top priority in the Deep Space Food Challenge. Sears noted the importance of food that is more than mere sustenance. “When extremely high performance is required, and the situations are demanding, tough, and lonely, the thing that pulls it all together and makes people operate at their best is eating fresh cooked food in community.” 
      Team Nolux won a $250,000 second-place prize for its Nolux food system that uses artificial photosynthesis to grow ingredients that could be used by astronauts in space.OSU/CFAES/Kenneth Chamberlain Team Nolux, formed from faculty members, graduate, and undergraduate students from the University of California, Riverside, also won a $250,000 second prize for its artificial photosynthesis system. The Nolux system – whose name means “no light” – grows plant and fungal-based foods in a dark chamber using acetate to chemically stimulate photosynthesis without light, a capability that could prove valuable in space with limited access to sunlight.  
      Some members of the Nolux team are now commercializing select aspects of the technology developed during the challenge. These efforts are being pursued through a newly incorporated company focused on refining the technology and exploring market applications. 
      A competition inspired by NASA’s Deep Space Food Challenge will open this fall.  
      Stay tuned for more information: https://www.nasa.gov/prizes-challenges-and-crowdsourcing/centennial-challenges/  
      View the full article
    • By NASA
      Credit: NASA
      As part of the agency’s initiative to return humanity to the Moon and eventually send the first astronaut – an American – to Mars, NASA is surveying industry for interest and feedback on a fission surface power system, through a Request for Information issued Thursday.
      Earlier this month, NASA declared its intent to put a nuclear reactor on the Moon by the mid-2030s to support lunar exploration, provide power generation on Mars, and strengthen national security in space.
      “Today’s call for industry input is an important step toward engaging the commercial space industry in powering the lunar economy and enabling future human exploration on Mars,” said Steve Sinacore, Fission Surface Power program executive at NASA’s Glenn Research Center in Cleveland. “Developing a safe, reliable, and efficient power supply is key to unlocking the future of human space exploration and ensuring America retains its dominance in space.”
      Building on its previous work, NASA will work with industry to design a fission surface power system that would provide at least 100 kilowatts of electrical power, have a mass allocation of less than 15 metric tons, and use a closed Brayton cycle power conversion system, which converts heat to electricity.
      NASA’s new Fission Surface Power effort builds on more than 60 years of agency experience in exploration technology. In 2022, NASA awarded three contracts for fission surface power system concepts for the Moon. In addition, NASA has used nuclear power sources in spacecraft and rovers over the years.
      The size, weight, and power capability of fission systems make them an effective continuous power supply regardless of location. Additionally, a nuclear reactor could be placed in lunar regions where sunlight cannot reach and could sustain nights on the Moon which can last more than 14 Earth days near the poles.
      Nuclear power is a key element for NASA’s Artemis missions and supporting a robust lunar economy. The Request for Information invites innovators to contribute to this effort, allowing NASA to access industry expertise and bolstering American ingenuity.
      Responses to the Request for Information are due Thursday, Aug. 21, and could be used to finalize a potential opportunity later this year.
      The Fission Surface Power effort is managed through NASA Glenn. The power system development is funded by the agency’s Exploration Systems Development Mission Directorate Moon to Mars Program.
      Share
      Details
      Last Updated Aug 14, 2025 LocationNASA Headquarters Related Terms
      Glenn Research Center Exploration Systems Development Mission Directorate Fission Surface Power View the full article
    • By NASA
      Dr. Steven “Steve” Platnick stepped down from his role at NASA on August 8, 2025, after more than three decades of public service. Steve began his career at NASA as a physical scientist at Goddard Space Flight Center in 2002. He moved to the Earth Science Division in 2009, where he has served in various senior management roles, including as the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office and continued periodic meetings of the EOS Project Scientists, initiated by Michael King during his tenure. Steve expanded these meetings to include representatives of non-EOS Earth observing missions and representatives from Earth Science Mission Operations (ESMO). In addition, Steve was named Deputy Director for Atmospheres in the Earth Science Division in January 2015 and served in this position until July 2024.
      Dr. Steve Platnick Image credit: NASA During his time at NASA, Steve played an integral role in the development, sustainability, and advancement of NASA’s Earth Observing System platforms. From January 2003 – February 2010, Steve served as Deputy Project Scientist for Aqua. In this role, he applied his expertise in theoretical and experimental studies of satellite, aircraft, and ground-based cloud remote sensing to improve algorithms to benefit the data gathered from remote observing systems.
      Taking the Lead to Improve Algorithms
      Steve was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, serving as the MODIS Atmosphere Team Lead. Steve helped advance several key components of the MODIS instrument, which flies on NASA’s Terra and Aqua platforms. He led a team that enhanced, maintained, and evaluated MODIS algorithms that support the Level-2 (L2) Cloud Optical/Microphysical Properties components (e.g., COD06 and MYD06) for MODIS on Terra and Aqua. The algorithms were designed to retrieve thermodynamic phase, optical thickness, effective particle radius, and water path for liquid and ice clouds. The team’s work also contributes to L3 products that address cloud mask, aerosols, clouds, and clear sky radiance for data within  1° grids over one-day, eight-day, and one-month repeat cycles. Under Steve’s leadership, the team also developed L2 products (e.g., MODATML2 and MYDATML2) that include essential atmosphere datasets of samples collected at 5–10 km (3–6 mi) that is consistent with L3 products to ease storage requirements of core atmospheric data.
      Steve is also a member of the Suomi-National Polar-orbiting Partnership (Suomi NPP) Atmosphere Team, working on operational cloud optical and microphysical products. In this role, he contributed to algorithm development and refinement for the Cloud Product. In particular, he helped address a critical gap in the Visible Infrared Imaging Radiometer Suite (VIIRS) spectral channel, which was not designed to collect information for carbon dioxide (CO2) slicing and water vapor data in the same way as MODIS. Steve and his colleagues developed a suite of L2 algorithms for the spectral channels that were common to both MODIS and VIIRS to address cloud mask and cloud optical/microphysical properties. Through these efforts, the project has established a continuous cloud data record gathered from both instruments from 2017 to the present.
      Steve also participated in numerous other working groups during the past 30 years. He participated in the Global Energy and Water Exchanges (GEWEX) Cloud Assessment Working Group (2008–present), Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment (ARCSIX) Science Team (2023–present), ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES) Earth–Venture Suborbital (EVS)-2 Science Team (2014–2023), Deep Space Climate Observatory (DSCOVR) Science Team (2014–present), Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Science Team (2014–2023), PACE Science Definition Team, Deputy Chair (2011–2012), Glory Science Team (2010–2014) NASA Observations for Modeling Intercomparison Studies (obs4MIPs) Working Group (2011), Advanced Composition Explorer (ACE) Science Definition Team (2009–2011), and Geostationary Operational Environmental Satellites (GOES) R-series Advanced Baseline Imager (ABI) Cloud Team (2005–2009).
      Steve has also participated in numerous major airborne field campaigns in various roles, including: GSFC Lidar Observation and Validation Experiment (GLOVE, 2025), PACE Postlaunch Airborne eXperiment (PAX, 2024), the Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WH2yMSIE, 2024), ORACLES Science Team (2015–2019), Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) Science Team (2011–2015), Tropical Composition, Cloud and Climate Coupling (TC4) Management Team (2007), Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment (CRYSTAL-FACE) Science Management Team (2002), Southern Africa Fire-Atmosphere Research Initiative (SAFARI, 2000), First ISCCP Regional Experiment (FIRE) Arctic Cloud Experiment (ACE) (1998), Mikulski Archive for Space Telescopes (MAST, 1994), and ACE (1992).
      Supporting Earth Science Communications
      Through his senior leadership roles within ESD Steve has been supportive of the activities of NASA’s Science Support Office (SSO). He has participated in many NASA Science exhibits at both national and international scientific conferences, including serving as a Hyperwall presenter numerous times. He has met with task leaders frequently and has advocated on behalf of the SSO to management at NASA Headquarters, GSFC, and Global Sciences & Technology Inc.
      For The Earth Observer newsletter publication team in particular, Steve replaced Michael King as Acting EOS Senior Project Scientist in June 2008, taking over the authorship of “The Editor’s Corner” beginning with the May–June 2008 issue [Volume 20, Issue 3]. The Acting label was removed beginning with the January–February 2010 issue [Volume 22, Issue 1]. Steve has been a champion of continuing to retain a historical record of NASA meetings to maintain a chronology of advances made by different groups within the NASA Earth Science community. He was supportive of the Executive Editor’s efforts to create a series called “Perspectives on EOS,” which ran from 2008–2011 and told the stories of the early years of the EOS Program from the point of view of those who lived them. He also supported the development of articles to commemorate the 25th and 30th anniversary of The Earth Observer. Later, Steve helped guide the transition of the newsletterfrom a print publication – the November–December 2022 issue was the last printed issue – to fully online by July 2024, a few months after the publication’s 35th anniversary. The Earth Observer team will miss Steve’s keen insight, historical perspective, and encouragement that he has shown through his leadership for the past 85 issues of print and online publications.
      A Career Recognized through Awards and Honors
      Throughout his career, Steve has amassed numerous honors, including the Robert H. Goddard Award for Science: MODIS/VIIRS Cloud Products Science Team (2024) and the William Nordberg Memorial Award for Earth Science in 2023. He received the Verner E. Suomi Award from the American Meteorological Society (AMS) in 2016 and was named an AMS Fellow that same year.
      Steve has received numerous NASA Group Achievement Awards, including for the Cloud, Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex) Field Campaign Team (2020), Fire Influence of Regional to Global Environments and Air Quality (FIREX-AQ) Field Campaign Team (2020), ORACLES Field Campaign Team (2019), obs4MIPs Working Group (2015), SEAC4RS Field Campaign Team (2015), Advanced Microwave Scanning Radiometer for EOS (AMSR-E) Instrument Recovery Team (2013), Climate Absolute Radiance and Refractivity Observatory (CLARREO) Mission Concept Team (2012), Earth Science Constellation Red Team (2011), Science Mission Directorate ARRA Team (2011), TC4 Team (2009), MODIS Science Data Support Team (2007), Aqua Mission Team (2003), CRYSTAL-FACE Science Team (2003), and SAFARI 2000 International Leadership Team (2002).
      Steve received two NASA Agency Honor Awards – the Exceptional Service Medal in 2015 and the Exceptional Achievement Medal in 2008. He was also part of the NASA Agency Team Excellence Award in 2017 for his work with the Satellite Needs Assessment Team. The Laboratory for Atmospheres honored him with the Best Senior Author Publication Award in 2001 and the Scientific Research Peer Award in 2005.
      Steve received his bachelor’s degree and master’s degree in electrical engineering from Duke University and the University of California, Berkeley, respectively. He earned a Ph.D. in atmospheric sciences from the University of Arizona. He began his career at the Joint Center for Earth Systems Technology (JCET) at University of Maryland Baltimore County in 1996 as a research associate professor. He held this appointment until 2002. Steve has published more than 150 scholarly articles.
      View the full article
    • By NASA
      NASA Honor Award recipients are shown with their award plaques, alongside NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell, following the ceremony at NASA Stennis on Aug. 13. Pictured (left to right) is Andrew Bracey, Briou Bourgeois, Jared Grover, Robert Simmers, Robert Williams, Richard Wear, Tom Stanley, Alison Dardar, Marvin Horne, Cary Tolman, Tim Pierce, Rebecca Mataya, Bailey, Powell, Gina Ladner, and Brittany Bouche. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey speaks to employees during the NASA Honor Awards ceremony at NASA Stennis on Aug. 13. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell presented NASA Honor Awards to employees during an onsite ceremony Aug. 13.
      One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission.
      Marvin Horne of Fulton, Maryland, received the NASA Outstanding Leadership Medal for his work in the Office of Procurement that has resulted in significant cost savings for the agency. Among his accomplishments, Horne designed, implemented, and led an integrated contract management office between NASA Stennis, NASA’s Michoud Assembly Facility in New Orleans, and NASA’s Marshall Space Flight Center in Huntsville, Alabama. The office transformed facility services from independent models to a shared model. The innovative solution was the first joint contract management office at NASA Stennis comprised of procurement, finance, and technical personnel designed to implement effective and efficient business processes. Horne currently serves as the NASA acting administrator for procurement.
      Three NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives.
      Jared Grover of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for his contributions to the success of the NASA Stennis E Test Complex through his dedication and technical expertise. As a NASA mechanical operations engineer, he has led various testing and facility preparation efforts, worked with challenging propellants, and trained new personnel. His work has supported numerous NASA and commercial aerospace projects Grover is also active in community outreach, promoting NASA’s mission and inspiring future engineers.
      Tim Pierce of Long Beach, Mississippi, received the NASA Exceptional Service Medal following 26 years with NASA and 41 years working at NASA Stennis as a contractor and civil servant in the Center Operations Directorate. Through Pierce’s contributions, NASA Stennis became a leader in drafting agreements with external agencies, streamlining administrative procedures, and enhancing partnerships. In one notable instance, he led efforts to collaborate with county officials on a sewer treatment project that will save costs and optimize underused infrastructure. Pierce retired from NASA in January 2025.
      Barry Robinson of Slidell, Louisiana, received the NASA Exceptional Service Medal in absentia for service to the nation’s space program and achievement across multiple propulsion test programs and projects. Robinson joined NASA in 1994 and worked on the space shuttle main engine test project, eventually becoming a test operations consultant. Over the years, Robinson held various roles, including chief of the NASA Stennis Mechanical Engineering Branch and project manager for projects supporting NASA’s SLS (Space Launch System) rocket for Artemis missions to the Moon and beyond. Robinson retired from NASA in December 2024.
      One NASA Stennis employee received NASA’s Exceptional Engineering Achievement Medal. The medal is awarded to both government and non-government individuals for exceptional engineering contributions toward achievement of NASA’s mission.
      Richard Wear of Slidell, Louisiana, received the NASA Exceptional Engineering Achievement Medal for his contributions to the NASA Stennis Engineering and Test Directorate. Wear serves as the subject matter expert in thermal and fluid systems analysis. In that role, he has greatly contributed to facilitating the use of liquid natural gas propellant in testing onsite, including by developing a Cryogenics in Propulsion Testing training course to support future test projects and programs. His contributions have significantly enhanced NASA’s support for commercial partners at NASA Stennis.
      Eight NASA Stennis employees received NASA’s Exceptional Achievement Medal. This medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.
      Leslie Anderson of Picayune, Mississippi, received the NASA Exceptional Achievement Medal in absentia for leadership and customer service as the lead accountant in the Office of the Chief Financial Officer at NASA Stennis. Anderson has successfully managed critical financial activities with technical expertise, project management, and strong customer service skills. Her efforts help maintain federal partnerships worth approximately $70 million annually and contribute to the success of NASA Stennis, demonstrating NASA’s core values of integrity, teamwork, excellence, and inclusion.
      Alison Dardar of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for innovation in improving financial and technical processes associated with the $1 billion-plus consolidated operations and maintenance contract for NASA Stennis and NASA’s Michoud Assembly Facility in New Orleans. As senior budget analyst in the NASA Stennis Office of the Chief Financial Officer, Dardar led in identifying and addressing key reporting and accounting issues related to the contract. Her innovations resulted in a 55% improvement in cost reporting accuracy and $20 million in savings to the contract.
      Gina Ladner of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for management, problem solving, and leadership during a year-long detail as chief of the NASA Stennis Facilities Services Division. During the year, Ladner led the division team through numerous changes and tackled unexpected challenges, including a severe weather event that featured confirmed tornados onsite and a contractor work stoppage activity, to ensure ongoing site operations. She also led in numerous infrastructure investments, including repairs to roadways, fire systems, and communications equipment.
      Rebecca Mataya of Carriere, Mississippi, received the NASA Exceptional Achievement Medal for service as a budget analyst in the NASA Stennis Office of the Chief Financial Officer in improving processes and operations. As an analyst on the procurement development team for a new operations, services, and infrastructure contract, Mataya identified creative methods to increase cost savings and maximize facility projects. She also has helped secure over $408 million for facility improvements, enhancing water systems, power generation, and more.
      Tom Stanley of Biloxi, Mississippi, received the NASA Exceptional Achievement Medal for contributions to improve NASA’s technology transfer process. As the NASA Stennis technology transfer officer, he developed a tool to standardize and automate evaluation of software usage agreements, reducing costs by 10 times and evaluation time by 75%. The changes led to record numbers of agreements awarded. Stanley also created a tool for contract closeouts, which has contributed to cost savings for the agency.
      Cary Tolman of Fort Walton Beach, Florida, received the NASA Exceptional Achievement Medal for work in the NASA Office of the General Counsel. Beyond her role as procurement attorney, Tolman established a software and management audit review team to provide consistent and timely legal advice on software licenses and terms. Tolman’s work has helped NASA save $85 million and simplified legal support for software issues while reducing cybersecurity and financial risk.
      Casey Wheeler of Gulfport, Mississippi, received the NASA Exceptional Achievement Medal for leadership and innovation in replacing the high pressure water industrial water system that supports crucial testing facilities at NASA Stennis. As project manager in the NASA Stennis Center Operations Directorate, Wheeler showcased his planning and coordination skills by completing the complex project without delaying rocket engine testing. His work restored the system to full design pressure in an area that directly supports NASA’s SLS (Space Launch System) rocket through RS-25 engine testing, and other critical projects.
      Dale Woolridge of Slidell, Louisiana, received the NASA Exceptional Achievement Medal in absentia for contributions as project manager in the NASA Stennis Center Operations Directorate. Woolridge successfully led multiple construction projects, completing them on time and within budget. One notable project was the refurbishment of the miter gates at NASA Stennis’ navigational lock, which supports NASA’s rocket engine testing operations. The team completed the refurbishment ahead of schedule and within budget, ensuring minimal disruption to NASA operations.
      Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency.
      Briou Bourgeois of Pass Christian, Mississippi, received the NASA Early Career Achievement for his contributions in the NASA Stennis Engineering and Test Directorate. Bourgeois joined NASA in 2017 and has worked on various projects, including the SLS (Space Launch System) core stage Green Run test series and RS-25 engine testing for Artemis missions. Bourgeois played a key role in modifying the liquid oxygen tanking process during the SLS core stage series. He has since become test director in the NASA Stennis E Test Complex and a leader in commercial test projects at NASA Stennis.
      Brandon Ladner of Poplarville, Mississippi, received the NASA Early Career Achievement Medal for contributions to the Exploration Upper Stage Test Project on the Thad Cochran Test Stand at NASA Stennis. As the NASA lead mechanical design engineer for the project, Ladner has significantly contributed to the design and build-up of the B-2 position of the Thad Cochran Test Stand in preparation for Green Run testing of the new SLS (Space Launch System) upper stage. He has led in completion of numerous large design packages and provided valuable engineering oversight to improve construction schedule.
      Robert Simmers of Slidell, Louisiana, received the NASA Early Career Achievement for his expertise and versatility since joining NASA in 2015 as a member of the NASA Stennis Safety and Mission Assurance Directorate team. He serves as the safety point of contact for the Thad Cochran Test Stand (B-2). In that role, he supported all operations during Green Run testing of NASA’s SLS (Space Launch System) core stage. Simmers also has supported safety audits at various NASA centers. In 2020, he became the NASA Stennis explosive safety officer responsible for explosive safety and compliance.
      Robert Williams of Gulfport, Mississippi, received the NASA Early Career Achievement for his work in the NASA Stennis Engineering and Test Directorate. Williams has worked with NASA for eight years, serving as a lead mechanical design engineer for several commercial test projects. Williams is recognized as a subject matter expert in structural systems and has contributed to various NASA Stennis projects, providing technical and modeling expertise.
      Two NASA Stennis employees received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner.
      Brittany Bouche of Slidell, Louisiana, received the NASA Silver Achievement Medal for contributions in the NASA Stennis Center Operations Directorate. Bouche has held multiple key roles in the Facilities Services Division, including acting deputy, maintenance and operations lead, and project manager for several construction projects. She has successfully led various design and construction projects, completing them on time and within budget. These include a $9.1 million sewage system and treatment repair project, successfully completed with minimal service impact.
      Andrew Bracey of Picayune, Mississippi, received the NASA Silver Achievement Medal for contributions as a NASA electrical design engineer at NASA Stennis. He has provided critical design support for work related to Green Run testing of the new SLS (Space Launch System) exploration upper stage. Bracey also has been crucial to the NASA Stennis vision of supporting commercial aerospace testing, leading preliminary design reviews for multiple projects onsite.
      Read More on Stennis Space Center Share
      Details
      Last Updated Aug 14, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 3 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 3 months ago View the full article
  • Check out these Videos

×
×
  • Create New...