Members Can Post Anonymously On This Site
Ancient Comet Makes Appearance
-
Similar Topics
-
By USH
The Curiosity rover continues to capture fascinating anomalies on the Martian surface. In this instance, researcher Jean Ward has examined a particularly intriguing discovery: a disc-shaped object embedded in the side of a mound or hill.
The images were taken by the Curiosity rover’s Mast Camera (Mastcam) on April 30, 2025 (Sol 4526). To improve clarity, Ward meticulously removed the grid overlay from the photographs, enhancing the visibility of the object.
To provide better spatial context for the disc’s location, Ward assembled two of the images into a collage. In the composite, you can see the surrounding area including a ridge, and the small mound where the disc appears partially embedded, possibly near the entrance of an opening.
The next image offers the clearest view of the anomaly. Ward again removed the grid overlay and subtly enhanced the contrast to bring out finer details, as the original image appeared overly bright and washed out.
In the close-up, displayed at twice the original scale, the smooth arc of the disc is distinctly visible. Its texture seems unusual, resembling stone or a slab-like material, flat yet with a defined curvature.
Might this disc-like structure have been engineered as a gateway, part of a hidden entrance leading to an architectural complex embedded within the hillside, hinting at a long-forgotten subterranean stronghold once inhabited by an extraterrestrial civilization?
Links original NASA images: https://mars.nasa.gov/raw_images/1461337/ https://mars.nasa.gov/raw_images/1461336/https://mars.nasa.gov/raw_images/1461335/
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
“If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.
As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
“There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
X-ray: NASA/CXC/Technion/N. Keshet et al.; Illustration: NASA/CXC/SAO/M. Weiss People often think about archaeology happening deep in jungles or inside ancient pyramids. However, a team of astronomers has shown that they can use stars and the remains they leave behind to conduct a special kind of archaeology in space.
Mining data from NASA’s Chandra X-ray Observatory, the team of astronomers studied the relics that one star left behind after it exploded. This “supernova archaeology” uncovered important clues about a star that self-destructed – probably more than a million years ago.
Today, the system called GRO J1655-40 contains a black hole with nearly seven times the mass of the Sun and a star with about half as much mass. However, this was not always the case.
Originally GRO J1655-40 had two shining stars. The more massive of the two stars, however, burned through all of its nuclear fuel and then exploded in what astronomers call a supernova. The debris from the destroyed star then rained onto the companion star in orbit around it, as shown in the artist’s concept.
This artist’s impression shows the effects of the collapse and supernova explosion of a massive star. A black hole (right) was formed in the collapse and debris from the supernova explosion is raining down onto a companion star (left), polluting its atmosphere.CXC/SAO/M. Weiss With its outer layers expelled, including some striking its neighbor, the rest of the exploded star collapsed onto itself and formed the black hole that exists today. The separation between the black hole and its companion would have shrunk over time because of energy being lost from the system, mainly through the production of gravitational waves. When the separation became small enough, the black hole, with its strong gravitational pull, began pulling matter from its companion, wrenching back some of the material its exploded parent star originally deposited.
While most of this material sank into the black hole, a small amount of it fell into a disk that orbits around the black hole. Through the effects of powerful magnetic fields and friction in the disk, material is being sent out into interstellar space in the form of powerful winds.
This is where the X-ray archaeological hunt enters the story. Astronomers used Chandra to observe the GRO J1655-40 system in 2005 when it was particularly bright in X-rays. Chandra detected signatures of individual elements found in the black hole’s winds by getting detailed spectra – giving X-ray brightness at different wavelengths – embedded in the X-ray light. Some of these elements are highlighted in the spectrum shown in the inset.
The team of astronomers digging through the Chandra data were able to reconstruct key physical characteristics of the star that exploded from the clues imprinted in the X-ray light by comparing the spectra with computer models of stars that explode as supernovae. They discovered that, based on the amounts of 18 different elements in the wind, the long-gone star destroyed in the supernova was about 25 times the mass of the Sun, and was much richer in elements heavier than helium in comparison with the Sun.
This analysis paves the way for more supernova archaeology studies using other outbursts of double star systems.
A paper describing these results titled “Supernova Archaeology with X-Ray Binary Winds: The Case of GRO J1655−40” was published in The Astrophysical Journal in May 2024. The authors of this study are Noa Keshet (Technion — Israel Institute of Technology), Ehud Behar (Technion), and Timothy Kallman (NASA’s Goddard Space Flight Center).
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features an artist’s rendering of a supernova explosion, inset with a spectrum graph.
The artist’s illustration features a star and a black hole in a system called GRO J1655-40. Here, the black hole is represented by a black sphere to our upper right of center. The star is represented by a bright yellow sphere to our lower left of center. In this illustration, the artist captures the immensely powerful supernova as a black hole is created from the collapse of a massive star, with an intense burst of blurred beams radiating from the black sphere. The blurred beams of red, orange, and yellow light show debris from the supernova streaking across the entire image in rippling waves. These beams rain debris on the bright yellow star.
When astronomers used the Chandra X-ray Observatory to observe the system in 2005, they detected signatures of individual elements embedded in the X-ray light. Some of those elements are highlighted in the spectrum graph shown in the inset, positioned at our upper lefthand corner.
The graph’s vertical axis, on our left, indicates X-ray brightness from 0.0 up to 0.7 in intensity units. The horizontal axis, at the bottom of the graph, indicates Wavelength from 6 to 12 in units of Angstroms. On the graph, a tight zigzagging line begins near the top of the vertical axis, and slopes down toward the far end of the horizontal axis. The sharp dips show wavelengths where the light has been absorbed by different elements, decreasing the X-ray brightness. Some of the elements causing these dips have been labeled, including Silicon, Magnesium, Iron, Nickel, Neon, and Cobalt.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
On March 6, 1985, NASA’s newest space shuttle, Atlantis, made its public debut during a rollout ceremony at the Rockwell International manufacturing plant in Palmdale, California. Under construction for three years, Atlantis joined NASA’s other three space-worthy orbiters, Columbia, Challenger, and Discovery, and atmospheric test vehicle Enterprise. Officials from NASA, Rockwell, and other organizations attended the rollout ceremony. By the time NASA retired Atlantis in 2011, it had flown 33 missions in a career spanning 26 years and flying many types of missions envisioned for the space shuttle. The Visitor Center at NASA’s Kennedy Space Center in Florida has Atlantis on display.
Space shuttle Atlantis under construction at Rockwell International’s Palmdale, California, plant in 1984. Credit/NASA. Atlantis during the rollout ceremony in Palmdale. Credit/NASA. Workers truck Atlantis from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center. Credit/NASA. On Jan. 25, 1979, NASA announced the names of the first four space-worthy orbiters – Columbia, Challenger, Discovery, and Atlantis. Like the other vehicles, NASA named Atlantis after an historical vessel of discovery and exploration – the Woods Hole Oceanographic Institute’s two-masted research ship Atlantis that operated from 1930 to 1966. On Jan. 29, NASA signed the contract with Rockwell International of Downey, California, to build and deliver Atlantis. Construction began in March 1980 and finished in April 1984. Nearly identical to Discovery but with the addition of hardware to support the cryogenic Centaur upper stage then planned to deploy planetary spacecraft in 1986, plans shelved following the Challenger accident. After a year of testing, workers prepared Atlantis for its public debut.
Atlantis arrives at NASA’s Dryden, now Armstrong, Flight Research Center to prepare for its cross-country ferry flight. Credit/NASA. Atlantis during an overnight stop at Ellington Air Force Base, now Ellington Field, in Houston. Credit/NASA. Atlantis arrives at NASA’s Kennedy Space Center in Florida.Credit/NASA. Three days after the rollout ceremony, workers trucked Atlantis 36 miles overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base in California’s Mojave Desert, for final preparations for its cross-country ferry flight. In the Mate Demate Device, workers placed Atlantis atop the Shuttle Carrier Aircraft, a modified Boeing 747, to begin the ferry flight. The duo left Edwards on April 12, the fourth anniversary of the first space shuttle flight. Following an overnight stop at Houston’s Ellington Air Force Base, now Ellington Field, Atlantis arrived at NASA’s Kennedy Space Center in Florida on April 13.
Atlantis following its first rollout to Launch Pad 39A. Credit/NASA. The flight readiness firing of Atlantis’ three main engines.Credit/NASA. Liftoff of Atlantis on its first mission, STS-51J. Credit/NASA. Four months later, on Aug. 12, workers towed Atlantis from the processing facility to the assembly building and mated it to an external tank and twin solid rocket boosters. The entire stack rolled out to Launch Pad 39A on Aug. 30 in preparation for the planned Oct. 3 launch of the STS-51J mission. As with any new orbiter, on Sept. 13 NASA conducted a 20-second Flight Readiness Firing of Atlantis’ three main engines. On Sept. 16, the five-person crew participated in a countdown demonstration test, leading to an on time Oct. 3 launch. Atlantis had joined the shuttle fleet and begun its first mission to space.
Space shuttle Atlantis in the Visitor Center at NASA’s Kennedy Space Center in Florida. Credit/NASA. Over the course of its 33 missions spanning more than 26 years, Atlantis flew virtually every type of mission envisioned for the space shuttle, including government and commercial satellite deployments, deploying spacecraft to visit interplanetary destinations, supporting scientific missions, launching and servicing scientific observatories such as the Hubble Space Telescope, performing crew rotations and resupplying the Mir space station, and assembling and maintaining the International Space Station. Atlantis flew the final mission of the shuttle program, STS-135, in July 2011. The following year, NASA transported Atlantis to the Kennedy Visitor Center for public display.
Explore More
7 min read 40 Years Ago: Space Shuttle Discovery Makes its Public Debut
Article 1 year ago 14 min read 40 Years Ago: STS-4, Columbia’s Final Orbital Flight Test
Article 3 years ago 6 min read 45 Years Ago: Space Shuttle Enterprise Makes its Public Debut
Article 3 years ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.