Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9817-k1340x520.png

A team of astronomers has announced that a recently detected gamma-ray burst was as bright as the rest of the universe, releasing a hundred times more energy than previously theorized.

The team measured the distance to a faint galaxy from which the burst, designated GRB 971214, originated. It is about 12 billion light-years from Earth. The astronomers used a suite of satellites and ground-based telescopes to follow the burst. This Hubble image of the GRB 971214 field was taken about four months after the burst, well after the afterglow had faded away. The extremely faint and distant object marked with an arrow is the host galaxy of the gamma-ray burst.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What Would It Take to Say We Found Life?
      We call this the podium test. What would it take for you personally to confidently stand up in front of an international audience and make that claim? When you put it in that way, I think for a lot of scientists, the bar is really high.
      So of course, there would be obvious things, you know, a very clear signature of technology or a skeleton or something like that. But we think that a lot of the evidence that we might encounter first will be much more subtle. For example, chemical signs of life that have to be detected above a background of abiotic chemistry. And really, what we see might depend a lot on where we look.
      On Mars, for example, the long history of exploration there gives us a lot of context for what we might find. But we’re potentially talking about samples that are billions of years old in those cases, and on Earth, those kinds of samples, the evidence of life is often degraded and difficult to detect.
      On the ocean worlds of our outer solar system, so places like Jupiter’s moon Europa and Saturn’s moon Enceladus, there’s the tantalizing possibility of extant life, meaning life that’s still alive. But potentially we’re talking about exceedingly small amounts of samples that would have to be analyzed with a relatively limited amount of instrumentation that can be carried from Earth billions of miles away.
      And then for exoplanets, these are planets beyond our own solar system. Really, what we’re looking for there are very large magnitude signs of life that can be detectable through a telescope from many light-years away. So changes like the oxygenation of Earth’s atmosphere or changes in surface color.
      So any one of those things, if they rose to the suspicion of being evidence of life, would be really heavily scrutinized in a very sort of specific and custom way to that particular observation. But I think there are also some general principles that we can follow. And the first is just: Are we sure we’re seeing what we think we’re seeing? Many of these environments are not very well known to us, and so we need to convince ourselves that we’re actually seeing a clear signal that represents what we think it represents.
      Carl Sagan once said, “Life is the hypothesis of last resort,” meaning that we ought to work hard for such a claim to rule out alternative possibilities. So what are those possibilities? One is contamination. The spacecraft and the instruments that we use to look for evidence of life are built in an environment, Earth, that is full of life. And so we need to convince ourselves that what we’re seeing is not evidence of our own life, but evidence of indigenous life.
      If that’s the case, we should ask, should life of the type we’re seeing live there? And finally, we need to ask, is there any other way than life to make that thing, any of the possible abiotic processes that we know and even the ones that we don’t know? And as you can imagine, that will be quite a challenge.
      Once we have a piece of evidence in hand that we really do think represents evidence of life, now we can begin to develop hypotheses. For example, do we have separate independent lines of evidence that corroborate what we’ve seen and increase our confidence of life?
      Ultimately, all of this has to be looked at hard by the entire scientific community, and in that sense, I think the really operative word in our question is we. What does it take to say we found evidence of life? Because really, the answer, I think, depends on the full scientific community scrutinizing and skepticizing this observation to finally say that we scientists, we as a community and we as humanity found life.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Sep 10, 2025 Related Terms
      Astrobiology Mars Perseverance (Rover) Science & Research Science Mission Directorate Explore More
      6 min read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
      A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured…
      Article 21 minutes ago 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery 
      Article 1 day ago 6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e
      Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Research Astrophysicist and Roman’s Deputy Wide Field Instrument Scientist – Goddard Space Flight Center
      From a young age, Ami Choi — now a research astrophysicist at NASA — was drawn to the vast and mysterious. By the fifth grade, she had narrowed her sights to two career paths: marine biology or astrophysics. 
      “I’ve always been interested in exploring big unknown realms, and things that aren’t quite tangible,” Choi said. That curiosity has served her all throughout her career.
      In addition to conducting research, Ami Choi shares science with the public at various outreach events, including tours at NASA’s Goddard Space Flight Center in Greenbelt, Md. This photo captures one tour stop, outside the largest clean room at Goddard.Credit: NASA/Travis Wohlrab As a student at University Laboratory High School in Urbana, Illinois, Choi gravitated toward astrophysics and was fascinated by things like black holes. She studied physics as an undergraduate at the University of Chicago, though she says math and physics didn’t necessarily come easily to her.
      “I wasn’t very good at it initially, but I really liked the challenge so I stuck with it,” Choi said.
      Early opportunities to do research played a pivotal role in guiding her career. As an undergraduate, Choi worked on everything from interacting galaxies to the stuff in between stars in our galaxy, called the interstellar medium. She learned how to code, interpret data, and do spectroscopy, which involves splitting light from cosmic objects into a rainbow of colors to learn about things like their composition.
      After college, Choi read an article about physicist Janet Conrad’s neutrino work at Fermilab and was so inspired by Conrad’s enthusiasm and inclusivity that she cold-emailed her to see if there were any positions available in her group. 
      On October 14, 2023, Ami took a break from a thermal vacuum shift to snap a selfie with a partial eclipse. She was visiting BAE, Inc. in Boulder, Co., where the primary instrument for NASA’s Nancy Grace Roman Space Telescope was undergoing testing. Credit: Courtesy of Ami Choi “That one email led to a year at Fermilab working on neutrino physics,” Choi said.
      She went on to earn a doctorate at the University of California, Davis, where she studied weak gravitational lensing — the subtle warping of light by gravity — and used it to explore dark matter, dark energy, and the large-scale structure of the universe.
      Her postdoctoral work took Choi first to the University of Edinburgh in Scotland, where she contributed to the Kilo-Degree Survey, and later to The Ohio State University, where she became deeply involved in DES (the Dark Energy Survey) and helped lay the groundwork for the Nancy Grace Roman Space Telescope — NASA’s next flagship astrophysics mission. 
      “One of my proudest moments came in 2021, when the DES released its third-year cosmology results,” Choi said. “It was a massive team effort conducted during a global pandemic, and I had helped lead as a co-convener of the weak lensing team.”
      Choi regularly presents information about NASA’s Nancy Grace Roman Space Telescope to fellow scientists and the public. Here, she gives a Hyperwall talk at an AAS (American Astronomical Society) meeting.Credit: Courtesy of Ami Choi After a one-year stint at the California Institute of Technology in Pasadena, where Choi worked on SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer)—an observatory that’s surveying stars and galaxies—she became a research astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She also serves as the deputy Wide Field Instrument scientist for Roman. Choi operates at the intersection of engineering, calibration, and cosmology, helping translate ground-based testing into flight-ready components that will help Roman reveal large swaths of the universe in high resolution.
      “I’m very excited for Roman’s commissioning phase — the first 90 days when the spacecraft will begin transmitting data from orbit,” Choi said. 
      Choi, photographed here in Death Valley, finds joy in the natural world outside of work. She cycles, hikes, and tends a small vegetable garden with a friend from grad school. Credit: Insook Choi (used with permission) She’s especially drawn to so-called systematics, which are effects that can alter the signals scientists are trying to measure. “People sometimes think of systematics as nuisances, but they’re often telling us something deeply interesting about either the physics of something like a detector or the universe itself,” Choi said. “There’s always something more going on under the surface.”
      While she’s eager to learn more about things like dark energy, Choi is also looking forward to seeing all the other ways our understanding of the universe grows. “It’s more than just an end goal,” she said. “It’s about everything we learn along the way. Every challenge we overcome, every detail we uncover, is an important discovery too.”
      For those who hope to follow a similar path, Choi encourages staying curious, being persistent, and taking opportunities to get involved in research. And don’t let the tricky subjects scare you away! “You don’t have to be perfect at math or physics right away,” she said. “What matters most is a deep curiosity and the tenacity to keep pushing through.”
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 09, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
      Goddard Space Flight Center Nancy Grace Roman Space Telescope People of Goddard View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ocean currents swirl around North America (center left) and Greenland (upper right) in this data visualization created using NASA’s ECCO model. Advanced computing is helping oceanographers decipher hot spots of phytoplankton growth.NASA’s Scientific Visualization Studio As Greenland’s ice retreats, it’s fueling tiny ocean organisms. To test why, scientists turned to a computer model out of JPL and MIT that’s been called a laboratory in itself.
      Runoff from Greenland’s ice sheet is kicking nutrients up from the ocean depths and boosting phytoplankton growth, a new NASA-supported study has found. Reporting in Nature Communications: Earth & Environment, the scientists used state-of-the art-computing to simulate marine life and physics colliding in one turbulent fjord. Oceanographers are keen to understand what drives the tiny plantlike organisms, which take up carbon dioxide and power the world’s fisheries.
      Greenland’s mile-thick ice sheet is shedding some 293 billion tons (266 billion metric tons) of ice per year. During peak summer melt, more than 300,000 gallons (1,200 cubic meters) of fresh water drain into the sea every second from beneath Jakobshavn Glacier, also known as Sermeq Kujalleq,the most active glacier on the ice sheet. The waters meet and tumble hundreds of feet below the surface.
      Teal-colored phytoplankton bloom off the Greenland coast in this satellite image captured in June 2024 by NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission.NASA The meltwater plume is fresh and more buoyant than the surrounding saltwater. As it rises, scientists have hypothesized, it may be delivering nutrients like iron and nitrate — a key ingredient in fertilizer — to phytoplankton floating at the surface.
      Researchers track these microscopic organisms because, though smaller by far than a pinhead, they’re titans of the ocean food web. Inhabiting every ocean from the tropics to the polar regions, they nourish krill and other grazers that, in turn, support larger animals, including fish and whales.
      Previous work using NASA satellite data found that the rate of phytoplankton growth in Arctic waters surged 57% between 1998 and 2018 alone. An infusion of nitrate from the depths would be especially pivotal to Greenland’s phytoplankton in summer, after most nutrients been consumed by prior spring blooms. But the hypothesis has been hard to test along the coast, where the remote terrain and icebergs as big as city blocks complicate long-term observations.
      “We were faced with this classic problem of trying to understand a system that is so remote and buried beneath ice,” said Dustin Carroll, an oceanographer at San José State University who is also affiliated with NASA’s Jet Propulsion Laboratory in Southern California. “We needed a gem of a computer model to help.”
      Sea of Data
      To re-create what was happening in the waters around Greenland’s most active glacier, the team harnessed a model of the ocean developed at JPL and the Massachusetts Institute of Technology in Cambridge. The model ingests nearly all available ocean measurements collected by sea- and satellite-based instruments over the past three decades. That amounts to billions of data points, from water temperature and salinity to pressure at the seafloor. The model is called Estimating the Circulation and Climate of the Ocean-Darwin (ECCO-Darwin for short).
      Simulating “biology, chemistry, and physics coming together” in even one pocket along Greenland’s 27,000 miles (43,000 kilometers) of coastline is a massive math problem, noted lead author Michael Wood, a computational oceanographer at San José State University. To break it down, he said the team built a “model within a model within a model” to zoom in on the details of the fjord at the foot of the glacier.
      Using supercomputers at NASA’s Ames Research Center in Silicon Valley, they calculated that deepwater nutrients buoyed upward by glacial runoff would be sufficient to boost summertime phytoplankton growth by 15 to 40% in the study area.
      More Changes in Store
      Could increased phytoplankton be a boon for Greenland’s marine animals and fisheries? Carroll said that untangling impacts to the ecosystem will take time. Melt on the Greenland ice sheet is projected to accelerate in coming decades, affecting everything from sea level and land vegetation to the saltiness of coastal waters.
      “We reconstructed what’s happening in one key system, but there’s more than 250 such glaciers around Greenland,” Carroll said. He noted that the team plans to extend their simulations to the whole Greenland coast and beyond.
      Some changes appear to be impacting the carbon cycle both positively and negatively: The team calculated how runoff from the glacier alters the temperature and chemistry of seawater in the fjord, making it less able to dissolve carbon dioxide. That loss is canceled out, however, by the bigger blooms of phytoplankton taking up more carbon dioxide from the air as they photosynthesize.
      Wood added: “We didn’t build these tools for one specific application. Our approach is applicable to any region, from the Texas Gulf to Alaska. Like a Swiss Army knife, we can apply it to lots of different scenarios.”
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-101
      Share
      Details
      Last Updated Aug 06, 2025 Related Terms
      Earth Carbon Cycle Earth Science Ice & Glaciers Jet Propulsion Laboratory Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Water on Earth Explore More
      4 min read NASA’s Perseverance Rover Captures Mars Vista As Clear As Day
      Article 16 minutes ago 1 min read NASA’s Black Marble: Stories from the Night Sky
      Studying the glowing patterns of Earth’s surface helps us understand human activity, respond to disasters,…
      Article 2 days ago 4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
      Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      SVEC building locations including parking areas. Where to Park at the Event Center
      We have event spaces in multiple buildings. See below for details.
      At the main Event Center in building 3, at the front of the building (East side) there is a large lot with standard and accessible spaces. This is the best place to park as it affords the easiest access to the entry doors, which have an ADA accessible ramp. At the rear of the building, there is a secondary large over-flow lot. As this is on the back side of the building, you will need to walk all the way around to enter through the main entrance, or make arrangements to enter through the ADA accessible doors at the rear of the building.

      Inside the NASA security fence, at building N232 and the N201 Syverston Auditorium, there is very little parking available and it is first-come first-serve. We highly recommend walking or carpooling to these locations if you are attending an event in either of them

      Please keep in mind that if you are driving in, the driver will need a valid, RealID, drivers license. In addition, everyone in the car must have a valid form of ID; Government issued RealID, valid passport, or other form of accepted identification.
      Back to the SVEC Home
      View the full article
    • By NASA
      Generic Calendar Upcoming Events for the Public
      Check below for upcoming events that are open to the public being held at the Event Center
      SundayMondayTuesdayWednesdayThursdayFridaySaturday Back to SVEC Home
      View the full article
  • Check out these Videos

×
×
  • Create New...