Jump to content

First Greenhouse Gas Plumes Detected With NASA-Designed Instrument


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The imaging spectrometer aboard the Carbon Mapper Coalition’s Tanager-1 satellite identified methane and carbon dioxide plumes in the United States and internationally.

Using data from an instrument designed by NASA’s Jet Propulsion Laboratory in Southern California, the nonprofit Carbon Mapper has released the first methane and carbon dioxide detections from the Tanager-1 satellite. The detections highlight methane plumes in Pakistan and Texas, as well as a carbon dioxide plume in South Africa.

The data contributes to Carbon Mapper’s goal to identify and measure greenhouse gas point-source emissions on a global scale and make that information accessible and actionable. 

Enabled by Carbon Mapper and built by Planet Labs PBC, Tanager-1 launched from Vandenberg Space Force Base in California on Aug. 16 and has been collecting data to verify that its imaging spectrometer, which is based on technology developed at NASA JPL, is functioning properly. Both Planet Labs PBC and JPL are members of the philanthropically funded Carbon Mapper Coalition.

“The first greenhouse gas images from Tanager-1 are exciting and are a compelling sign of things to come,” said James Graf, director for Earth Science and Technology at JPL. “The satellite plays a crucial role in detecting and measuring methane and carbon dioxide emissions. The mission is a giant step forward in addressing greenhouse gas emissions.”

The data used to produce the Pakistan image was collected over the city of Karachi on Sept. 19 and shows a roughly 2.5-mile-long (4-kilometer-long) methane plume emanating from a landfill. Carbon Mapper’s preliminary estimate of the source emissions rate is more than 2,600 pounds (1,200 kilograms) of methane released per hour.

The image collected that same day over Kendal, South Africa, displays a nearly 2-mile-long (3-kilometer-long) carbon dioxide plume coming from a coal-fired power plant. Carbon Mapper’s preliminary estimate of the source emissions rate is roughly 1.3 million pounds (600,000 kilograms) of carbon dioxide per hour.

The Texas image, collected on Sept. 24, reveals a methane plume to the south of the city of Midland, in the Permian Basin, one of the largest oilfields in the world. Carbon Mapper’s preliminary estimate of the source emissions rate is nearly 900 pounds (400 kilograms) of methane per hour.

In the 1980s, JPL helped pioneer the development of imaging spectrometers with AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), and in 2022, NASA installed the imaging spectrometer EMIT (Earth Surface Mineral Dust Source Investigation), developed at JPL, aboard the International Space Station.

A descendant of those instruments, the imaging spectrometer aboard Tanager-1 can measure hundreds of wavelengths of light reflected from Earth’s surface. Each chemical compound on the ground and in the atmosphere reflects and absorbs different combinations of wavelengths, which give it a “spectral fingerprint” that researchers can identify. Using this approach, Tanager-1 will help researchers detect and measure emissions down to the facility level.

Once in full operation, the spacecraft will scan about 116,000 square miles (300,000 square kilometers) of Earth’s surface per day. Methane and carbon dioxide measurements collected by Tanager-1 will be publicly available on the Carbon Mapper data portal.

More About Carbon Mapper

Carbon Mapper is a nonprofit organization focused on facilitating timely action to mitigate greenhouse gas emissions. Its mission is to fill gaps in the emerging global ecosystem of methane and carbon dioxide monitoring systems by delivering data at facility scale that is precise, timely, and accessible to empower science-based decision making and action. The organization is leading the development of the Carbon Mapper constellation of satellites supported by a public-private partnership composed of Planet Labs PBC, JPL, the California Air Resources Board, Arizona State University, and RMI, with funding from High Tide Foundation, Bloomberg Philanthropies, Grantham Foundation for the Protection of the Environment, and other philanthropic donors.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

2024-136

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Today, at the Living Planet Symposium, ESA revealed the first stunning images from its groundbreaking Biomass satellite mission – marking a major leap forward in our ability to understand how Earth’s forests are changing and exactly how they contribute to the global carbon cycle. But these inaugural glimpses go beyond forests. Remarkably, the satellite is already showing potential to unlock new insights into some of Earth’s most extreme environments.
      View the full article
    • By European Space Agency
      Image: ESA astronaut Sophie Adenot’s first mission to the International Space Station now has a name: εpsilon. The mission name and patch were announced today at the Paris Air Show by ESA Director General Josef Aschbacher, French President Emmanuel Macron, and Sophie Adenot, who joined remotely from the United States, where she is training for her spaceflight.
      Sophie Adenot is one of the five astronauts selected from ESA’s most recent astronaut class of 2022. Following the successful completion of their basic training in spring 2024, Josef Aschbacher announced during the Space Council in Brussels that Sophie and fellow graduate Raphaël Liégois had been assigned their first missions to the International Space Station, currently planned for 2026.
      The εpsilon name and patch reflect the power of small, yet impactful contributions and how multiple parts unite to create a whole.
      In mathematics, “ε” represents something small. In the extensive collaborative effort of space exploration, involving thousands of participants, all roles, including the astronaut's role, stay small yet meaningful.
      The hummingbird, central to the patch, embodies this idea; though one of Earth’s smallest birds, it plays a crucial role in the jungle’s ecosystem, pollinating numerous plants.
      Encircling the patch is a ring of small dots, symbolising the many small contributions that together make great achievements possible. All these little actions that can be coordinated to form a circle and close the loop. At the top, three of these dots are coloured – blue, white, and red – representing Sophie’s home country, France, and ESA’s exploration destinations: Earth, the Moon, and Mars.
      The name εpsilon, being the fifth Greek letter and the fifth brightest star of the Leo constellation, also follows the French tradition to name human spaceflight missions after celestial bodies. It also pays tribute to the five career astronauts of ESA’s 2022 class. 
      Three lines emerge from the “i” of the εpsilon, shaping the tail of a shooting star, a poetic reminder that dreams keep us alive.
      At the base of the patch lies a rounded blue shape, representing Earth’s surface and its natural beauty: mountains, forests and landscapes that Sophie enjoys exploring. It serves as a reminder of our motivation for spaceflight: to explore, learn, and return with this knowledge to benefit life on Earth.
      From an emotional perspective, the same message is conveyed. In life's intricate tapestry, small threads contribute to create the most beautiful patterns. A kind word, a gentle smile, a moment of patience - these seemingly insignificant actions can transform lives and shape destinies. This patch invites each of us to embrace the potential of our smallest actions as they ripple outward, touching hearts and inspiring souls.
      During her εpsilon mission, Sophie will perform numerous scientific experiments, many of them European, conduct medical research, support Earth observation and contribute to operations and maintenance aboard the International Space Station.
      View the full article
    • By European Space Agency
      Today, the European Space Agency’s Proba-3 mission unveils its first images of the Sun’s outer atmosphere – the solar corona. The mission’s two satellites, able to fly as a single spacecraft thanks to a suite of onboard positioning technologies, have succeeded in creating their first ‘artificial total solar eclipse’ in orbit. The resulting coronal images demonstrate the potential of formation flying technologies, while delivering invaluable scientific data that will improve our understanding of the Sun and its enigmatic atmosphere.
      View the full article
    • By European Space Agency
      Video: 00:01:40 Proba-3 artificially created what is normally a rare natural phenomenon: a total solar eclipse.
      In a world first, ESA’s Proba-3 satellites flew in perfect formation, blocking the Sun’s bright disc to reveal its fiery corona. This enigmatic outer layer burns millions of degrees hotter than the Sun’s surface and drives the solar storms that can disrupt life on Earth.
      With its first artificial eclipse, Proba-3 has captured detailed images of this mysterious region, offering scientists new insights into our star’s behaviour.
      Read the full story here.
      Access the related broadcast qality footage. 
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Electrical engineer Nikolas Gibson performs calibration tests on the MODIS/ASTER Airborne Simulator (MASTER) spectrometer, co-developed by NASA’s Ames Research Center and NASA’s Jet Propulsion Laboratory. Gibson works at the Airborne Sensor Facility at Ames, which builds, maintains, miniaturizes, and calibrates instruments.NASA/Milan Loiacono
      NASA’s Ames Research Center in Silicon Valley houses a unique laboratory: the Airborne Sensor Facility (ASF). The engineers at the ASF are responsible for building, maintaining, and operating numerous instruments that get deployed on research aircraft, but one of their most important roles is instrument calibration.

      Think of calibration like tuning a piano between performances: A musician uses a tuner to set the standard pitch for each string, ensuring that the piano remains on pitch for every concert.

      The “tuners” at ASF include lasers, mirrors, and a light source called an integrating sphere – a hollow sphere about 36 inches in diameter that emits a set amount of light from a hole in the top. By checking an instrument against this baseline between each mission, engineers ensure that the instrument sensors provide accurate, reliable data every time.

      In the photo above, electrical engineer Nikolas Gibson performs calibration tests on the MODIS/ASTER Airborne Simulator (MASTER) spectrometer, co-developed by NASA Ames and NASA’s Jet Propulsion Laboratory in Southern California.

      A spectrometer separates light into individual wavelengths, providing researchers with information about the properties of whatever is creating or interacting with that light. The MASTER instrument measures about 50 individual spectral channels, providing data on wavelengths from the visible spectrum through the infrared.

      When it comes to calibration, each of these channels functions like a specific key on a piano and needs to be individually checked against the “tuner.” By pointing the instrument’s sensor at a known quantity of light coming from the integrating sphere, the team checks the accuracy of MASTER’s data output and repairs or adjusts the sensor as needed.

      In this image, MASTER had returned from an April 2025 scientific campaign observing  prescribed fires in Alabama and Georgia with NASA’s FireSense project. It was recalibrated before heading back into the field for the Geological Earth Mapping Experiment, or GEMx,  mission in late May 2025, which will use the instrument to help map critical minerals across the southwestern United States.
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jun 11, 2025 Related Terms
      Ames Research Center's Science Directorate Ames Research Center Science Instruments Explore More
      5 min read NASA F-15s Validate Tools for Quesst Mission
      Article 1 day ago 2 min read Dr. Natasha Schatzman Receives Vertical Flight Society (VFS) Award
      Article 5 days ago 2 min read NASA Provides Hardware for Space Station DNA Repair Experiment 
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...