Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9822-k1340x520.png

Resembling a gigantic hubcap in space, a 3,700-light-year-wide dust disk encircles a 300-million- solar-mass black hole in the center of the elliptical galaxy NGC 7052.

The disk, possibly a remnant of an ancient galaxy collision, will be swallowed up by the black hole in several billion years. The black-and-white image on the left, taken by a ground-based telescope, shows the complete galaxy. The Hubble picture on the right is a close-up view of the dust disk surrounding the black hole.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and jets oriented toward Earth, provided scientists with a unique opportunity to answer a longstanding question: How are X-rays generated in extreme environments like this?
      NASA’s IXPE (Imaging X-ray Polarimetry Explorer) collaborated with radio and optical telescopes to find answers. The results (preprint available here), to be published in the journal Astrophysical Journal Letters, show that interactions between fast-moving electrons and particles of light, called photons, must lead to this X-ray emission. 
      This artist’s concept depicts the central region of the blazar BL Lacertae, a supermassive black hole surrounded by a bright disk and a jet oriented toward Earth. The galaxy’s central black hole is surrounded by swirls of orange in various shades representing the accretion disk of material falling toward the black hole. While black holes are known for pulling in material, this accretion process can result in the ejection of jets of electrons at nearly the speed of light. The jet of matter is represented by the cone of light that starts at the center of the black hole and widens out as it reaches the bottom of the image. It is streaked with lines of white, pink and purple which represent helix-shaped magnetic fields. We can observe these jets in many wavelengths of light including radio, optical, and X-ray. NASA’s Imaging X-ray Polarimetry Explorer (IXPE) recently collaborated with radio and optical telescopes to observe this jet and determine how the X-rays are generated in these types of celestial environments.NASA/Pablo Garcia Scientists had two competing possible explanations for the X-rays, one involving protons and one involving electrons. Each of these mechanisms would have a different signature in the polarization of X-ray light. Polarization is a property of light that describes the average direction of the electromagnetic waves that make up light.
      If the X-rays in a black hole’s jets are highly polarized, that would mean that the X-rays are produced by protons gyrating in the magnetic field of the jet or protons interacting with jet’s photons. If the X-rays have a lower polarization degree, it would suggest that electron-photons interactions lead to X-ray production.  
      IXPE, which launched Dec. 9, 2021, is the only satellite flying today that can make such a polarization measurement. 
      “This was one of the biggest mysteries about supermassive black hole jets” said Iván Agudo, lead author of the study and astronomer at the Instituto de Astrofísica de Andalucía – CSIC in Spain. “And IXPE, with the help of a number of supporting ground-based telescopes, finally provided us with the tools to solve it.”
      Astronomers found that electrons must be the culprits through a process called Compton Scattering. Compton scattering (or the Compton effect) happens when a photon loses or gains energy after interacting with a charged particle, usually an electron. Within jets from supermassive black holes, electrons move near the speed of light. IXPE helped scientists learn that, in the case of a blazar jet, the electrons have enough energy to scatter photons of infrared light up to X-ray wavelengths. 
      BL Lacertae (BL Lac for short) is one of the first blazars ever discovered, originally thought to be a variable star in the Lacerta constellation. IXPE observed BL Lac at the end of November 2023 for seven days along with several ground-based telescopes measuring optical and radio polarization at the same time. While IXPE observed BL Lac in the past, this observation was special. Coincidentally, during the X-ray polarization observations, the optical polarization of BL Lac reached a high number: 47.5%. 
      “This was not only the most polarized BL Lac has been in the past 30 years, this is the most polarized any blazar has ever been observed!” said Ioannis Liodakis, one of the primary authors of the study and astrophysicist at the Institute of Astrophysics – FORTH in Greece. 
      IXPE found the X-rays were far less polarized than the optical light. The team was not able to measure a strong polarization signal and determined that the X-rays cannot be more polarized than 7.6%. This proved that electrons interacting with photons, via the Compton effect, must explain the X-rays. 
      The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering.
      Steven Ehlert
      Project Scientist for IXPE at Marshall Space Flight Center
      “The fact that optical polarization was so much higher than in the X-rays can only be explained by Compton scattering”, said Steven Ehlert, project scientist for IXPE and astronomer at the Marshall Space Flight Center. 
      “IXPE has managed to solve another black hole mystery” said Enrico Costa, astrophysicist in Rome at the Istituto di Astrofísica e Planetologia Spaziali of the Istituto Nazionale di Astrofísica. Costa is one of the scientists who conceived this experiment and proposed it to NASA 10 years ago, under the leadership of Martin Weisskopf, IXPE’s first principal investigator. “IXPE’s polarized X-ray vision has solved several long lasting mysteries, and this is one of the most important. In some other cases, IXPE results have challenged consolidated opinions and opened new enigmas, but this is how science works and, for sure, IXPE is doing very good science.”
      What’s next for the blazar research?
      “One thing we’ll want to do is try to find as many of these as possible,” Ehlert said. “Blazars change quite a bit with time and are full of surprises.”
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Elizabeth Landau
      NASA Headquarters
      elizabeth.r.landau@nasa.gov
      202-358-0845
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      lane.e.figueroa@nasa.gov
      256.544.0034 
      Share
      Details
      Last Updated May 06, 2025 EditorBeth RidgewayContactElizabeth R. Landauelizabeth.r.landau@nasa.govLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Explore More
      4 min read NASA’s Chandra Diagnoses Cause of Fracture in Galactic “Bone”
      Article 5 days ago 4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 2 weeks ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 3 weeks ago Keep Exploring Discover Related Topics
      IXPE
      About Marshall Science
      Marshall Space Flight Center
      Black Holes
      Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
      View the full article
    • By NASA
      This NASA/ESA Hubble Space Telescope image features a peculiar spiral galaxy called Arp 184 or NGC 1961.ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
      The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
      This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
      The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
      Image credit: ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Images a Peculiar Spiral
      This NASA/ESA Hubble Space Telescope image features a peculiar spiral galaxy called Arp 184 or NGC 1961. ESA/Hubble & NASA, J. Dalcanton, R. J. Foley (UC Santa Cruz), C. Kilpatrick A beautiful but skewed spiral galaxy dazzles in this NASA/ESA Hubble Space Telescope image. The galaxy, called Arp 184 or NGC 1961, sits about 190 million light-years away from Earth in the constellation Camelopardalis (The Giraffe).
      The name Arp 184 comes from the Atlas of Peculiar Galaxies compiled by astronomer Halton Arp in 1966. It holds 338 galaxies that are oddly shaped and tend to be neither entirely elliptical nor entirely spiral-shaped. Many of the galaxies are in the process of interacting with other galaxies, while others are dwarf galaxies without well-defined structures. Arp 184 earned its spot in the catalog thanks to its single broad, star-speckled spiral arm that appears to stretch toward us. The galaxy’s far side sports a few wisps of gas and stars, but it lacks a similarly impressive spiral arm.
      This Hubble image combines data from three Snapshot observing programs, which are short observations that slotted into time gaps between other proposals. One of the three programs targeted Arp 184 for its peculiar appearance. This program surveyed galaxies listed in the Atlas of Peculiar Galaxies as well as A Catalogue of Southern Peculiar Galaxies and Associations, a similar catalog compiled by Halton Arp and Barry Madore.
      The remaining two Snapshot programs looked at the aftermath of fleeting astronomical events like supernovae and tidal disruption events — like when a supermassive black hole rips a star apart after it wanders too closely. Since Arp 184 hosted four known supernovae in the past three decades, it is a rich target for a supernova hunt.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated May 01, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Tracing the Growth of Galaxies



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
    • By NASA
      ESA/Hubble & NASA, L. C. Ho, D. Thilker Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale).
      The designation Messier 77 comes from the galaxy’s place in the famous catalog compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who cataloged nebulous objects that could be mistaken for comets.
      Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterization isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realization that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy but were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright center surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
      The name ‘Squid Galaxy’ is recent, and stems from the extended, filamentary structure that curls around the galaxy’s disk like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!
      Hubble previously released an image of M77 in 2013. This new image incorporates recent observations made with different filters and updated image processing techniques which allow astronomers to see the galaxy in more detail.
      View the full article
    • By USH
      Several days ago, a massive blackout swept across large parts of Spain, Portugal, and parts of southern France. Millions were left without power as the interconnected European energy grid experienced a rare and abrupt failure. While authorities quickly pointed to a "rare atmospheric phenomenon" as the cause, not everyone is convinced. 

      Here are some explanations of authorities as well as controversial theories: 
      According to REN, Portugal’s national electricity grid operator, the blackout was triggered by a fault originating in Spain’s power infrastructure. The disruption, they claim, was linked to "induced atmospheric variation", a term referring to extreme temperature differences that led to anomalous oscillations in high-voltage transmission lines. These oscillations reportedly caused synchronization failures between regional grid systems, ultimately sparking a chain reaction of failures across the European network. 
      What makes the situation even more intriguing is that just days before the blackout, Spain hit a historic energy milestone. On April 16, for the first time, the country’s electricity demand was met entirely by renewable energy sources - solar, wind, and hydro, during a weekday. It raises questions whether the outage was caused by a technical failure of this new renewable energy system. 
      While this achievement is noteworthy, it also exposes the fragility of a grid increasingly reliant on variable energy sources, especially solar, which can fluctuate dramatically with weather and atmospheric conditions. 
      Despite official explanations, some experts and observers remain skeptical. There were no solar flares or geomagnetic storms in the days leading up to the blackout, and solar activity had been relatively calm. Critics argue that while atmospheric disturbances may have played a role, they are not sufficient to explain such a widespread, synchronized failure.
      Despite the fact that the blackout this time was probably not caused by solar flares or geomagnetic storms it has been proven that Earth’s magnetic shield is rapidly weakening, leaving us increasingly vulnerable to powerful solar storms. The magnetic north pole is accelerating toward Siberia, and the South Atlantic Anomaly continues to expand, ominous signs that a looming plasma event could bring consequences far beyond just technological disruption.
      This has led to speculation that the blackout could have been intentional, possibly even a test run for handling future crises or threats to infrastructure. 
      Among the more controversial theories is the suggestion that this event might have involved the use of a graphite bomb, a non-lethal weapon designed to disable power grids. These devices disperse ultra-fine carbon filaments into high-voltage power lines, causing short circuits by creating conductive paths between lines. Such an attack would appear as a grid malfunction but could be devastating in scale. 
      Another controversial theory is that the outage has been caused by weather manipulation systems such as HAARP or the Ice Cube Neutrino observatory, constructed at the Amundsen–Scott South Pole Station in Antarctica. 
      Could this have been a covert drill or a demonstration of vulnerability? Some point to global forums, such as the World Government Summit, where figures like Klaus Schwab have warned about Black Swan: An unpredictable event that is beyond what is normally expected of a situation and has potentially severe consequences. 
      Whether the blackout was triggered by a rare natural event, a technical failure, or something more deliberate, it seems only a matter of time before we face a true Black Swan event. View the full article
  • Check out these Videos

×
×
  • Create New...