Members Can Post Anonymously On This Site
Artemis I Radiation Measurements Validate Orion Safety for Astronauts
-
Similar Topics
-
By NASA
The crew of NASA’s SpaceX Crew-11 mission pose for a photo during a training session.Credit: SpaceX NASA astronauts Michael Finke and Zena Cardman will connect with students in Minnesota as they answer prerecorded science, technology, engineering, and mathematics (STEM) questions aboard the International Space Station.
The Earth-to-space call will begin at 11 a.m. EDT on Wednesday, Aug. 20, and will stream live on the agency’s Learn With NASA YouTube channel.
Media interested in covering the event must RSVP by 5 p.m., Tuesday, Aug. 19, to Elizabeth Ross at: 952-838-1340 or elizabeth.ross@pacer.org.
The PACER center will host this event in Bloomington for students in their Tech for Teens program. The organization aims to improve educational opportunities and enhance the quality of life for children and young adults with disabilities and their families. The goal of this event is to help educate and inspire teens with disabilities to consider opportunities in STEM fields.
For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
See more information on NASA in-flight downlinks at:
https://www.nasa.gov/stemonstation
-end-
Gerelle Dodson
Headquarters, Washington
202-358-1600
gerelle.q.dodson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-511
sandra.p.jones@nasa.gov
Share
Details
Last Updated Aug 15, 2025 LocationNASA Headquarters Related Terms
International Space Station (ISS) Artemis ISS Research STEM Engagement at NASA View the full article
-
By NASA
A member of the space crop production team prepares materials for Veggie seed pillows inside the Space Systems Processing Facility at NASA’s Kennedy Space Center. NASA/Cory S Huston When the Crew-11 astronauts launched to the International Space Station on August 1, 2025, they carried with them another chapter in space farming: the latest VEG-03 experiments, complete with seed pillows ready for planting.
Growing plants provides nutrition for astronauts, as well as psychological benefits that help maintain crew morale during missions.
During VEG-03 MNO, astronauts will be able to choose what they want to grow from a seed library including Wasabi mustard greens, Red Russian Kale, and Dragoon lettuce.
From Seed to Space Salad
The experiment takes place inside Veggie, a chamber about the size of carry-on luggage. The system uses red, blue, and green LED lights to provide the right spectrum for plant growth. Clear flexible bellows — accordion-like walls that expand to accommodate maturing plants — create a semi-controlled environment around the growing area.
Astronauts plant thin strips containing their selected seeds into fabric “seed pillows” filled with a special clay-based growing medium and controlled-release fertilizer. The clay, similar to what’s used on baseball fields, helps distribute water and air around the roots in the microgravity environment.
Crew members will monitor the plants, add water as needed, and document growth through regular photographs. At harvest time, astronauts will eat some of the fresh produce while freezing other samples for return to Earth, where scientists will analyze their nutritional content and safety.
How this benefits space exploration
Fresh food will become critical as astronauts venture farther from Earth on missions to the Moon and Mars. NASA aims to validate different kinds of crops to add variety to astronaut diets during long-duration space exploration missions, while giving crew members more control over what they grow and eat.
How this benefits humanity
The techniques developed for growing crops in space’s challenging conditions may also improve agricultural practices on Earth. Indoor crop cultivation approaches similar to what astronauts do in Veggie might also be adapted for horticultural therapy programs, giving elderly or disabled individuals new ways to experience gardening when traditional methods aren’t accessible.
Related Resources
VEG-03 MNO on the Space Station Research Explorer
Veggie Vegetable Product System
Veggie Plant Growth System Activated on International Space Station
About BPS
NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
View the full article
-
By NASA
Roscosmos cosmonaut Kirill Peskov, left, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi are seen inside the SpaceX Dragon spacecraft on the company’s recovery ship shortly after splashdown in the Pacific Ocean off the coast of San Diego, California, on Aug. 9, 2025.Credit: NASA/Keegan Barber After spending almost five months in space, NASA’s SpaceX Crew-10 astronauts will discuss their science mission aboard the International Space Station during a news conference at 4:15 p.m. EDT, Wednesday, Aug. 20, from the agency’s Johnson Space Center in Houston.
NASA astronauts Anne McClain and Nichole Ayers, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer questions about their mission. The crew returned to Earth on Aug. 9.
Live coverage of the news conference will stream on the agency’s YouTube channel. Learn how to watch NASA content through a variety of additional platforms, including social media.
This event is open to media to attend in person or virtually. For in-person, media must contact the NASA Johnson newsroom no later than 12 p.m., Tuesday, Aug. 19, at: jsccommu@mail.nasa.gov or 281-483-5111. Media participating by phone must dial into the news conference no later than 10 minutes prior to the start of the event to ask questions. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is available on the agency’s website.
The crew spent 146 days aboard the orbiting laboratory, traveling nearly 62,795,205 million miles and completing 2,368 orbits around Earth. While living and working aboard the station, the crew completed hundreds of science experiments and technology demonstrations. The latest NASA space station news, images, and features are available on Instagram, Facebook, and X.
NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. For almost 25 years, people have continuously lived and worked aboard the space station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon as we prepare for Mars.
Learn more about NASA’s Commercial Crew Program at:
https://www.nasa.gov/commercialcrew
-end-
Joshua Finch
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov
Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov
Share
Details
Last Updated Aug 14, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Written by Michael Allen
An international team of astronomers using NASA’s IXPE (Imaging X-ray Polarimetry Explorer), has challenged our understanding of what happens to matter in the direct vicinity of a black hole.
With IXPE, astronomers can study incoming X-rays and measure the polarization, a property of light that describes the direction of its electric field.
The polarization degree is a measurement of how aligned those vibrations are to each other. Scientists can use a black hole’s polarization degree to determine the location of the corona – a region of extremely hot, magnetized plasma that surrounds a black hole – and how it generates X-rays.
This illustration of material swirling around a black hole highlights a particular feature, called the “corona,” that shines brightly in X-ray light. In this depiction, the corona can be seen as a purple haze floating above the underlying accretion disk, and extending slightly inside of its inner edge. The material within the inner accretion disk is incredibly hot and would glow with a blinding blue-white light, but here has been reduced in brightness to make the corona stand out with better contrast. Its purple color is purely illustrative, standing in for the X-ray glow that would not be obvious in visible light. The warp in the disk is a realistic representation of how the black hole’s immense gravity acts like an optical lens, distorting our view of the flat disk that encircles it. NASA/Caltech-IPAC/Robert Hurt In April, astronomers used IXPE to measure a 9.1% polarization degree for black hole IGR J17091-3624, much higher than they expected based on theoretical models.
“The black hole IGR J17091-3624 is an extraordinary source which dims and brightens with the likeness of a heartbeat, and NASA’s IXPE allowed us to measure this unique source in a brand-new way.” said Melissa Ewing, the lead of the study based at Newcastle University in Newcastle upon Tyne, England.
In X-ray binary systems, an extremely dense object, like a black hole, pulls matter from a nearby source, most often a neighboring star. This matter can begin to swirl around, flattening into a rotating structure known as an accretion disc.
The corona, which lies in the inner region of this accretion disc, can reach extreme temperatures up to 1.8 billion degrees Fahrenheit and radiate very luminous X-rays. These ultra-hot coronas are responsible for some of the brightest X-ray sources in the sky.
Despite how bright the corona is in IGRJ17091-364, at some 28,000 light-years from Earth, it remains far too small and distant for astronomers to capture an image of it.
“Typically, a high polarization degree corresponds with a very edge-on view of the corona. The corona would have to be perfectly shaped and viewed at just the right angle to achieve such a measurement,” said Giorgio Matt, professor at the University of Roma Tre in Italy and a co-author on this paper. “The dimming pattern has yet to be explained by scientists and could hold the keys to understanding this category of black holes.”
The stellar companion of this black hole isn’t bright enough for astronomers to directly estimate the system’s viewing angle, but the unusual changes in brightness observed by IXPE suggest that the edge of the accretion disk was directly facing Earth.
The researchers explored different avenues to explain the high polarization degree.
In one model, astronomers included a “wind” of matter lifted from the accretion disc and launched away from the system, a rarely seen phenomenon. If X-rays from the corona were to meet this matter on their way to IXPE, Compton scattering would occur, leading to these measurements.
Fast Facts
Polarization measurements from IXPE carry information about the orientation and alignment of emitted X-ray light waves. The high the degree of polarization, the more the X-ray waves are traveling in sync. Most polarization in the corona come from a process known as Compton scattering, where light from the accretion disc bounces off the hot plasma of the corona, gaining energy and aligning to vibrate in the same direction. “These winds are one of the most critical missing pieces to understand the growth of all types of black holes,” said Maxime Parra, who led the observation and works on this topic at Ehime University in Matsuyama, Japan. “Astronomers could expect future observations to yield even more surprising polarization degree measurements.”
Another model assumed the plasma in the corona could exhibit a very fast outflow. If the plasma were to be streaming outwards at speeds as high as 20% the speed of light, or roughly 124 million miles per hour, relativistic effects could boost the observed polarization.
In both cases, the simulations could recreate the observed polarization without a very specific edge-on view. Researchers will continue to model and test their predictions to better understand the high polarization degree for future research efforts.
More about IXPE
IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder.
Learn more about IXPE’s ongoing mission here:
https://www.nasa.gov/ixpe
Share
Details
Last Updated Aug 12, 2025 EditorBeth RidgewayContactCorinne Edmistoncorinne.m.edmiston@nasa.govLocationMarshall Space Flight Center Related Terms
IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
Article 4 weeks ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
Article 4 weeks ago Keep Exploring Discover Related Topics
Chandra
Space Telescope
IXPE News
Black Holes
Black Holes Black holes are among the most mysterious cosmic objects, much studied but not fully understood. These objects aren’t…
Imaging X-ray Polarimetry Explorer (IXPE)
The Imaging X-ray Polarimetry Explorer (IXPE) is a space observatory built to discover the secrets of some of the most…
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Artemis II Orion stage adapter, built at NASA’s Marshall Space Flight Center in Huntsville, Alabama. NASA Media are invited to NASA’s Marshall Space Flight Center in Huntsville, Alabama, at 2 p.m. CDT Thursday, Aug. 14 to view the final piece of space flight hardware for the agency’s SLS (Space Launch System) rocket for the Artemis II mission before it is delivered to NASA’s Kennedy Space Center in Florida. All other elements of the SLS rocket for Artemis II are stacked on mobile launcher 1 in the Vehicle Assembly Building at Kennedy. Artemis II, NASA’s first mission with crew aboard the SLS rocket and Orion spacecraft, is currently scheduled for a 10-day trip around the Moon no later than April 2026.
The Orion stage adapter, built by NASA Marshall, connects the SLS rocket’s interim cryogenic propulsion stage to NASA’s Orion spacecraft. The small ring structure is the topmost portion of the SLS rocket. The adapter will also carry small payloads, called CubeSats, to deep space.
Media will have the opportunity to capture images and video and speak to subject matter experts. Along with viewing the adapter for Artemis II, media will be able to see the Orion stage adapter for the Artemis III mission, the first lunar landing at the Moon’s South Pole.
This event is open to U.S. media, who must confirm their attendance by 12 p.m. CDT Wednesday, Aug. 13, with Jonathan Deal in Marshall’s Office of Communications at jonathan.e.deal@nasa.gov. Media must also report by 1:30 p.m. Thursday, Aug.14 to the Redstone Arsenal Joint Visitor Control Center Gate 9 parking lot, located at the Interstate 565 interchange at Research Park Boulevard, to be escorted to the event.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
For more on SLS, visit:
https://www.nasa.gov/humans-in-space/space-launch-system
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256.631.9126
jonathan.e.deal@nasa.gov
Share
Details
Last Updated Aug 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Space Launch System (SLS) Marshall Space Flight Center Explore More
6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
Article 3 weeks ago 4 min read NASA’s IXPE Imager Reveals Mysteries of Rare Pulsar
Article 4 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.