Jump to content

Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light.

oba-copy-1.jpg?w=2048
This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.
NASA/Chris Gunn

The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor.

The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour.

“We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.”

The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass.

oba-from-inside-copy.jpg?w=2048
This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.
NASA/Chris Gunn

Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.

To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands).

If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior.

Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year.

In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory.

To virtually tour an interactive version of the telescope, visit:

https://roman.gsfc.nasa.gov/interactive

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

​​Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940

Share

Details

Last Updated
Oct 08, 2024
Editor
Jamie Adkins
Contact
Claire Andreoli

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      NASA’s 1991 Discovery shuttle video shows UFOs making impossible maneuvers, evading a possible Star Wars railgun test. Evidence of secret tech? 

      In September 1991, NASA’s Space Shuttle Discovery transmitted live video that has since become one of the most debated UFO clips ever recorded. The footage, later analyzed by independent researchers, shows glowing objects in orbit performing maneuvers far beyond the limits of known physics. 
      One object appears over Earth’s horizon, drifts smoothly, then suddenly reacts to a flash of light by accelerating at impossible speeds, estimated at over 200,000 mph while withstanding forces of 14,000 g’s. NASA officially dismissed the anomalies as ice particles or debris, but side by side comparisons with actual orbital ice show key differences: the objects make sharp turns, sudden accelerations, and fade in brightness in ways consistent with being hundreds of miles away, not near the shuttle. 
      Image analysis expert Dr. Mark Carlotto confirmed that at least one object was located about 1,700 miles from the shuttle, placing it in Earth’s atmosphere. At that distance, the object would be too large and too fast to be dismissed as ice or space junk. 
      The flash and two streaks seen in the video resemble the Pentagon’s “Brilliant Pebbles” concept, a railgun based missile defense system tested in the early 1990s. Researchers suggest the shuttle cameras may have accidentally, or deliberately, captured a live Star Wars weapons test in orbit. 
      The UFO easily evaded the attack, leading some to conclude that it was powered by a form of hyperdimensional technology capable of altering gravity. 
      Notably, following this 1991 incident, all subsequent NASA shuttle external camera feeds were censored or delayed, raising speculation that someone inside the agency allowed the extraordinary footage to slip out.
        View the full article
    • By NASA
      NASA Honor Award recipients are shown with their award plaques, alongside NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell, following the ceremony at NASA Stennis on Aug. 13. Pictured (left to right) is Andrew Bracey, Briou Bourgeois, Jared Grover, Robert Simmers, Robert Williams, Richard Wear, Tom Stanley, Alison Dardar, Marvin Horne, Cary Tolman, Tim Pierce, Rebecca Mataya, Bailey, Powell, Gina Ladner, and Brittany Bouche. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey speaks to employees during the NASA Honor Awards ceremony at NASA Stennis on Aug. 13. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell presented NASA Honor Awards to employees during an onsite ceremony Aug. 13.
      One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission.
      Marvin Horne of Fulton, Maryland, received the NASA Outstanding Leadership Medal for his work in the Office of Procurement that has resulted in significant cost savings for the agency. Among his accomplishments, Horne designed, implemented, and led an integrated contract management office between NASA Stennis, NASA’s Michoud Assembly Facility in New Orleans, and NASA’s Marshall Space Flight Center in Huntsville, Alabama. The office transformed facility services from independent models to a shared model. The innovative solution was the first joint contract management office at NASA Stennis comprised of procurement, finance, and technical personnel designed to implement effective and efficient business processes. Horne currently serves as the NASA acting administrator for procurement.
      Three NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives.
      Jared Grover of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for his contributions to the success of the NASA Stennis E Test Complex through his dedication and technical expertise. As a NASA mechanical operations engineer, he has led various testing and facility preparation efforts, worked with challenging propellants, and trained new personnel. His work has supported numerous NASA and commercial aerospace projects Grover is also active in community outreach, promoting NASA’s mission and inspiring future engineers.
      Tim Pierce of Long Beach, Mississippi, received the NASA Exceptional Service Medal following 26 years with NASA and 41 years working at NASA Stennis as a contractor and civil servant in the Center Operations Directorate. Through Pierce’s contributions, NASA Stennis became a leader in drafting agreements with external agencies, streamlining administrative procedures, and enhancing partnerships. In one notable instance, he led efforts to collaborate with county officials on a sewer treatment project that will save costs and optimize underused infrastructure. Pierce retired from NASA in January 2025.
      Barry Robinson of Slidell, Louisiana, received the NASA Exceptional Service Medal in absentia for service to the nation’s space program and achievement across multiple propulsion test programs and projects. Robinson joined NASA in 1994 and worked on the space shuttle main engine test project, eventually becoming a test operations consultant. Over the years, Robinson held various roles, including chief of the NASA Stennis Mechanical Engineering Branch and project manager for projects supporting NASA’s SLS (Space Launch System) rocket for Artemis missions to the Moon and beyond. Robinson retired from NASA in December 2024.
      One NASA Stennis employee received NASA’s Exceptional Engineering Achievement Medal. The medal is awarded to both government and non-government individuals for exceptional engineering contributions toward achievement of NASA’s mission.
      Richard Wear of Slidell, Louisiana, received the NASA Exceptional Engineering Achievement Medal for his contributions to the NASA Stennis Engineering and Test Directorate. Wear serves as the subject matter expert in thermal and fluid systems analysis. In that role, he has greatly contributed to facilitating the use of liquid natural gas propellant in testing onsite, including by developing a Cryogenics in Propulsion Testing training course to support future test projects and programs. His contributions have significantly enhanced NASA’s support for commercial partners at NASA Stennis.
      Eight NASA Stennis employees received NASA’s Exceptional Achievement Medal. This medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.
      Leslie Anderson of Picayune, Mississippi, received the NASA Exceptional Achievement Medal in absentia for leadership and customer service as the lead accountant in the Office of the Chief Financial Officer at NASA Stennis. Anderson has successfully managed critical financial activities with technical expertise, project management, and strong customer service skills. Her efforts help maintain federal partnerships worth approximately $70 million annually and contribute to the success of NASA Stennis, demonstrating NASA’s core values of integrity, teamwork, excellence, and inclusion.
      Alison Dardar of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for innovation in improving financial and technical processes associated with the $1 billion-plus consolidated operations and maintenance contract for NASA Stennis and NASA’s Michoud Assembly Facility in New Orleans. As senior budget analyst in the NASA Stennis Office of the Chief Financial Officer, Dardar led in identifying and addressing key reporting and accounting issues related to the contract. Her innovations resulted in a 55% improvement in cost reporting accuracy and $20 million in savings to the contract.
      Gina Ladner of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for management, problem solving, and leadership during a year-long detail as chief of the NASA Stennis Facilities Services Division. During the year, Ladner led the division team through numerous changes and tackled unexpected challenges, including a severe weather event that featured confirmed tornados onsite and a contractor work stoppage activity, to ensure ongoing site operations. She also led in numerous infrastructure investments, including repairs to roadways, fire systems, and communications equipment.
      Rebecca Mataya of Carriere, Mississippi, received the NASA Exceptional Achievement Medal for service as a budget analyst in the NASA Stennis Office of the Chief Financial Officer in improving processes and operations. As an analyst on the procurement development team for a new operations, services, and infrastructure contract, Mataya identified creative methods to increase cost savings and maximize facility projects. She also has helped secure over $408 million for facility improvements, enhancing water systems, power generation, and more.
      Tom Stanley of Biloxi, Mississippi, received the NASA Exceptional Achievement Medal for contributions to improve NASA’s technology transfer process. As the NASA Stennis technology transfer officer, he developed a tool to standardize and automate evaluation of software usage agreements, reducing costs by 10 times and evaluation time by 75%. The changes led to record numbers of agreements awarded. Stanley also created a tool for contract closeouts, which has contributed to cost savings for the agency.
      Cary Tolman of Fort Walton Beach, Florida, received the NASA Exceptional Achievement Medal for work in the NASA Office of the General Counsel. Beyond her role as procurement attorney, Tolman established a software and management audit review team to provide consistent and timely legal advice on software licenses and terms. Tolman’s work has helped NASA save $85 million and simplified legal support for software issues while reducing cybersecurity and financial risk.
      Casey Wheeler of Gulfport, Mississippi, received the NASA Exceptional Achievement Medal for leadership and innovation in replacing the high pressure water industrial water system that supports crucial testing facilities at NASA Stennis. As project manager in the NASA Stennis Center Operations Directorate, Wheeler showcased his planning and coordination skills by completing the complex project without delaying rocket engine testing. His work restored the system to full design pressure in an area that directly supports NASA’s SLS (Space Launch System) rocket through RS-25 engine testing, and other critical projects.
      Dale Woolridge of Slidell, Louisiana, received the NASA Exceptional Achievement Medal in absentia for contributions as project manager in the NASA Stennis Center Operations Directorate. Woolridge successfully led multiple construction projects, completing them on time and within budget. One notable project was the refurbishment of the miter gates at NASA Stennis’ navigational lock, which supports NASA’s rocket engine testing operations. The team completed the refurbishment ahead of schedule and within budget, ensuring minimal disruption to NASA operations.
      Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency.
      Briou Bourgeois of Pass Christian, Mississippi, received the NASA Early Career Achievement for his contributions in the NASA Stennis Engineering and Test Directorate. Bourgeois joined NASA in 2017 and has worked on various projects, including the SLS (Space Launch System) core stage Green Run test series and RS-25 engine testing for Artemis missions. Bourgeois played a key role in modifying the liquid oxygen tanking process during the SLS core stage series. He has since become test director in the NASA Stennis E Test Complex and a leader in commercial test projects at NASA Stennis.
      Brandon Ladner of Poplarville, Mississippi, received the NASA Early Career Achievement Medal for contributions to the Exploration Upper Stage Test Project on the Thad Cochran Test Stand at NASA Stennis. As the NASA lead mechanical design engineer for the project, Ladner has significantly contributed to the design and build-up of the B-2 position of the Thad Cochran Test Stand in preparation for Green Run testing of the new SLS (Space Launch System) upper stage. He has led in completion of numerous large design packages and provided valuable engineering oversight to improve construction schedule.
      Robert Simmers of Slidell, Louisiana, received the NASA Early Career Achievement for his expertise and versatility since joining NASA in 2015 as a member of the NASA Stennis Safety and Mission Assurance Directorate team. He serves as the safety point of contact for the Thad Cochran Test Stand (B-2). In that role, he supported all operations during Green Run testing of NASA’s SLS (Space Launch System) core stage. Simmers also has supported safety audits at various NASA centers. In 2020, he became the NASA Stennis explosive safety officer responsible for explosive safety and compliance.
      Robert Williams of Gulfport, Mississippi, received the NASA Early Career Achievement for his work in the NASA Stennis Engineering and Test Directorate. Williams has worked with NASA for eight years, serving as a lead mechanical design engineer for several commercial test projects. Williams is recognized as a subject matter expert in structural systems and has contributed to various NASA Stennis projects, providing technical and modeling expertise.
      Two NASA Stennis employees received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner.
      Brittany Bouche of Slidell, Louisiana, received the NASA Silver Achievement Medal for contributions in the NASA Stennis Center Operations Directorate. Bouche has held multiple key roles in the Facilities Services Division, including acting deputy, maintenance and operations lead, and project manager for several construction projects. She has successfully led various design and construction projects, completing them on time and within budget. These include a $9.1 million sewage system and treatment repair project, successfully completed with minimal service impact.
      Andrew Bracey of Picayune, Mississippi, received the NASA Silver Achievement Medal for contributions as a NASA electrical design engineer at NASA Stennis. He has provided critical design support for work related to Green Run testing of the new SLS (Space Launch System) exploration upper stage. Bracey also has been crucial to the NASA Stennis vision of supporting commercial aerospace testing, leading preliminary design reviews for multiple projects onsite.
      Read More on Stennis Space Center Share
      Details
      Last Updated Aug 14, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 3 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 3 months ago View the full article
    • By NASA
      National Institute of Aerospace NASA is calling on the next generation of collegiate innovators to imagine bold new concepts l pushing the boundaries of human exploration on the Moon, Mars, and beyond through the agency’s 2026 NASA Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
      The RASC-AL challenge fuels innovation for aerospace systems concepts, analogs, and technology prototyping by bridging gaps through university engagement with NASA and industry. The competition is seeking U.S.-based undergraduate and graduate-level teams and their faculty advisors to develop new concepts to improve our ability to operate on the Moon and Mars. This year’s themes range from developing systems and technologies to support exploration of the lunar surface, to enhancing humanity’s ability to operate and return data from the surface of Mars.  
      “This competition is a unique opportunity for university students to play a role in the future of space innovation,” said Dan Mazanek, assistant branch head of NASA’s Exploration Space Mission Analysis Branch at NASA’s Langley Research Center in Hampton Virginia. “The RASC-AL challenge fuels creativity and empowers students to explore what’s possible. We’re excited for another year of RASC-AL and fresh ideas coming our way.”  
      Interested and eligible teams are invited to propose groundbreaking solutions and systems approaches that redefine how humans live and explore in deep space with relation to one of the following themes:  
      Communications, Positioning, Navigation, and Timing Architectures for Mars Surface Operations  Lunar Surface Power and Power Management and Distribution Architectures   Lunar Sample Return Concept  Lunar Technology Demonstrations Leveraging Common Infrastructure   Teams should express their intent to participate by submitting a non-binding notice of intent by Monday Oct. 13. Teams who submit a notice will be invited to a question-and-answer session with NASA subject matter experts on Monday Oct. 27.  
      The proposals, due Monday Feb. 23, 2026, are required to be seven-to-nine pages with an accompanying two-to-three-minute video. Proposals should demonstrate innovative solutions with original engineering and analysis in response to one of the four 2026 RASC-AL themes. Each team’s response should address novel and robust technologies, capabilities, and operational models that support expanding human’s ability to thrive beyond Earth. 
      Based on review of the team proposal and video submissions, in March, up to 14 teams will be selected to advance to the final phase of the competition – writing a technical paper, creating a technical poster, and presenting their concepts to a panel of NASA and industry experts in a competitive design review at the 2026 RASC-AL Forum in Cocoa Beach, Florida, beginning Monday June 1, 2026. 
      “The RASC-AL challenge enables students to think like NASA engineers—and in doing so, they often become the engineers who will carry NASA forward,” said Dr. Christopher Jones, RASC-AL program sponsor and Chief Technologist for the Systems Analysis and Concepts Directorate at NASA Langley. “The concepts they develop for this year’s competition will help inform our future strategies.”  
      Each finalist team will receive a $7,000 stipend to facilitate their full participation in the 2026 RASC-AL competition, and the top two overall winning teams will each be awarded an additional $7,000 cash prize as well as an invitation to attend and present their concept at an aerospace conference later in 2026. 
      The 2026 NASA RASC-AL competition is administered by the National Institute of Aerospace on behalf of NASA. The RASC-AL competition is sponsored by the agency’s Strategy and Architecture Office in the Exploration Systems Development Mission Directorate at NASA Headquarters, the Space Technology Mission Directorate (STMD), and the Systems Analysis and Concepts Directorate at NASA Langley. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing Program in STMD, manages the challenge. 
      For more information about the RASC-AL competition, including eligibility and submission guidelines, visit: https://rascal.nianet.org/. 
      View the full article
    • By NASA
      NASA Glenn Research Center High School Engineering Institute participants, left to right: Evan Ricchetti, Edan Liahovetsky, and Doris Chen, prepare to add weights to their rover to test the effectiveness of their wheel grouser designs on Friday, July 18, 2025. Credit: NASA/Jef Janis  This summer, NASA’s Glenn Research Center in Cleveland hosted the NASA Glenn High School Engineering Institute, a free, work-based learning experience designed to prepare rising high school juniors and seniors for careers in the aerospace workforce. 
      “The institute immerses students in NASA’s work, providing essential career readiness tools for future science, technology, engineering, and mathematics-focused academic and professional pursuits,” said Jerry Voltz of NASA Glenn’s Office of STEM Engagement. 
      Throughout the five-day sessions (offered three separate weeks in July), students used authentic NASA mission content and collaborated with Glenn’s technical experts. They gained a deeper understanding of the engineering design process, developed practical engineering solutions to real-world challenges, and tested prototypes to address key mission areas such as: 
      Acoustic dampening: How can we reduce noise pollution from jet engines?  Power management and distribution: How can we develop a smart power system for future space stations?  Simulated lunar operations: Can we invent tires that don’t use air?  NASA Glenn Research Center High School Engineering Institute participants, left to right: Adriana Pudloski, Anadavel Sakthi, Aditya Rohatgi, and Alexa Apshago, make modifications to the control system program for their rover on Friday, July 18, 2025. Credit: NASA/Jef Janis  Voltz said he hoped students left the program with three key takeaways: a deeper curiosity and excitement for STEM careers, firsthand insight into how cutting-edge technology developed in Cleveland contributes to NASA’s most prominent missions, and most importantly, a feeling of empowerment gained from engaging with some of NASA’s brightest minds in the field. 
      Return to Newsletter View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope will be a discovery machine, thanks to its wide field of view and resulting torrent of data. Scheduled to launch no later than May 2027, with the team working toward launch as early as fall 2026, its near-infrared Wide Field Instrument will capture an area 200 times larger than the Hubble Space Telescope’s infrared camera, and with the same image sharpness and sensitivity. Roman will devote about 75% of its science observing time over its five-year primary mission to conducting three core community surveys that were defined collaboratively by the scientific community. One of those surveys will scour the skies for things that pop, flash, and otherwise change, like exploding stars and colliding neutron stars.
      These two images, taken one year apart by NASA’s Hubble Space Telescope, show how the supernova designated SN 2018gv faded over time. The High-Latitude Time-Domain Survey by NASA’s Nancy Grace Roman Space Telescope will spot thousands of supernovae, including a specific type that can be used to measure the expansion history of the universe.Credit: NASA, ESA, Martin Kornmesser (ESA), Mahdi Zamani (ESA/Hubble), Adam G. Riess (STScI, JHU), SH0ES Team Called the High-Latitude Time-Domain Survey, this program will peer outside of the plane of our Milky Way galaxy (i.e., high galactic latitudes) to study objects that change over time. The survey’s main goal is to detect tens of thousands of a particular type of exploding star known as type Ia supernovae. These supernovae can be used to study how the universe has expanded over time. 
      “Roman is designed to find tens of thousands of type Ia supernovae out to greater distances than ever before,” said Masao Sako of the University of Pennsylvania, who served as co-chair of the committee that defined the High-Latitude Time-Domain Survey. “Using them, we can measure the expansion history of the universe, which depends on the amount of dark matter and dark energy. Ultimately, we hope to understand more about the nature of dark energy.”
      Probing Dark Energy
      Type Ia supernovae are useful as cosmological probes because astronomers know their intrinsic luminosity, or how bright they inherently are, at their peak. By comparing this with their observed brightness, scientists can determine how far away they are. Roman will also be able to measure how quickly they appear to be moving away from us. By tracking how fast they’re receding at different distances, scientists will trace cosmic expansion over time.
      Only Roman will be able to find the faintest and most distant supernovae that illuminate early cosmic epochs. It will complement ground-based telescopes like the Vera C. Rubin Observatory in Chile, which are limited by absorption from Earth’s atmosphere, among other effects. Rubin’s greatest strength will be in finding supernovae that happened within the past 5 billion years. Roman will expand that collection to much earlier times in the universe’s history, about 3 billion years after the big bang, or as much as 11 billion years in the past. This would more than double the measured timeline of the universe’s expansion history.
      Recently, the Dark Energy Survey found hints that dark energy may be weakening over time, rather than being a constant force of expansion. Roman’s investigations will be critical for testing this possibility.
      Seeking Exotic Phenomena
      To detect transient objects, whose brightness changes over time, Roman must revisit the same fields at regular intervals. The High-Latitude Time-Domain Survey will devote a total of 180 days of observing time to these observations spread over a five-year period. Most will occur over a span of two years in the middle of the mission, revisiting the same fields once every five days, with an additional 15 days of observations early in the mission to establish a baseline. 
      This infographic describes the High-Latitude Time-Domain Survey that will be conducted by NASA’s Nancy Grace Roman Space Telescope. The survey’s main component will cover over 18 square degrees — a region of sky as large as 90 full moons — and see supernovae that occurred up to about 8 billion years ago.Credit: NASA’s Goddard Space Flight Center “To find things that change, we use a technique called image subtraction,” Sako said. “You take an image, and you subtract out an image of the same piece of sky that was taken much earlier — as early as possible in the mission. So you remove everything that’s static, and you’re left with things that are new.”
      The survey will also include an extended component that will revisit some of the observing fields approximately every 120 days to look for objects that change over long timescales. This will help to detect the most distant transients that existed as long ago as one billion years after the big bang. Those objects vary more slowly due to time dilation caused by the universe’s expansion.
      “You really benefit from taking observations over the entire five-year duration of the mission,” said Brad Cenko of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the other co-chair of the survey committee. “It allows you to capture these very rare, very distant events that are really hard to get at any other way but that tell us a lot about the conditions in the early universe.”
      This extended component will collect data on some of the most energetic and longest-lasting transients, such as tidal disruption events — when a supermassive black hole shreds a star — or predicted but as-yet unseen events known as pair-instability supernovae, where a massive star explodes without leaving behind a neutron star or black hole.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This sonification that uses simulated data from NASA’s OpenUniverse project shows the variety of explosive events that will be detected by NASA’s Nancy Grace Roman Space Telescope and its High-Latitude Time-Domain Survey. Different sounds represent different types of events, as shown in the key at right. A single kilonova seen about 12 seconds into the video is represented with a cannon shot. The sonification sweeps backward in time to greater distances from Earth, and the pitch of the instrument gets lower as you move outward. (Cosmological redshift has been converted to a light travel time expressed in billions of years.) Credit: Sonification: Martha Irene Saladino (STScI), Christopher Britt (STScI); Visualization: Frank Summers (STScI); Designer: NASA, STScI, Leah Hustak (STScI) Survey Details
      The High-Latitude Time-Domain Survey will be split into two imaging “tiers” —  a wide tier that covers more area and a deep tier that will focus on a smaller area for a longer time to detect fainter objects. The wide tier, totaling a bit more than 18 square degrees, will target objects within the past 7 billion years, or half the universe’s history. The deep tier, covering an area of 6.5 square degrees, will reach fainter objects that existed as much as 10 billion years ago. The observations will take place in two areas, one in the northern sky and one in the southern sky. There will also be a spectroscopic component to this survey, which will be limited to the southern sky.
      “We have a partnership with the ground-based Subaru Observatory, which will do spectroscopic follow-up of the northern sky, while Roman will do spectroscopy in the southern sky. With spectroscopy, we can confidently tell what type of supernovae we’re seeing,” said Cenko.
      Together with Roman’s other two core community surveys, the High-Latitude Wide-Area Survey and the Galactic Bulge Time-Domain Survey, the High-Latitude Time-Domain Survey will help map the universe with a clarity and to a depth never achieved before.
      Download the sonification here.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc. in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      By Christine Pulliam
      Space Telescope Science Institute, Baltimore, Md.
      Share
      Details
      Last Updated Aug 12, 2025 EditorAshley BalzerLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Dark Energy Neutron Stars Stars Supernovae The Universe Explore More
      6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 4 months ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
      Article 2 years ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
      Article 4 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...