Jump to content

Mark Sonoda: Leading NASA’s Path to the Commercialization of Space


Recommended Posts

  • Publishers
Posted

With over 34 years of experience in human spaceflight, Mark Sonoda has witnessed some of NASA’s most pivotal moments, from the startup of the International Space Station to the retirement of the space shuttle. As the acting associate program manager for the Commercial Low Earth Orbit Development Program (CLDP), he is set to help guide NASA through another monumental period: the commercialization of space.

jsc2019e019245.jpg?w=1638
Official portrait of Mark Sonoda.
NASA/Bill Stafford

Sonoda’s new role grants extraordinary opportunities to shape the future of human spaceflight. While NASA has maintained a leading presence in low Earth orbit since 1961, Sonoda shared how CLDP is “working to establish commercial low Earth orbit destinations owned and operated by private companies, where NASA is just one of many customers. This shift will open doors to even more advancements and benefits for humanity.”

Sonoda plans to leverage his decades of experience to support the growth of CLDP as it moves from early planning stages into a more operational phase. Specifically, he will apply his expertise in systems engineering and leadership to helping certify commercial destinations in low Earth orbit. One of his priorities is ensuring that the program team is set up for success with the right personnel, infrastructure, and resources to be successful as it grows.

A man takes a selfie in front of the Lincoln Memorial in Washington, D.C.
Mark Sonoda visits the Lincoln Memorial during a trip to Washington, DC.

Sonoda’s NASA experience has offered him many valuable lessons, the most important of which is the power of teamwork. He recalls a time when, as a station training lead, he realized that even the most well-prepared plans benefit from team collaboration. “A good team will always be stronger than an individual,” he shared, noting that the strength of NASA lies in its collective effort.

Looking ahead, Sonoda anticipates exciting opportunities to foster commercial partnerships. He is particularly optimistic that increased access to space for private companies and individuals will cultivate new innovations and public interest in space exploration. At the same time, he acknowledges that NASA must adapt to its new role in low Earth orbit, transitioning from being the primary driver of exploration to becoming one of many customers in a thriving commercial ecosystem.

A family gathers around a kitchen island, smiling for a group photo.
Mark Sonoda is with his family.

For the Artemis Generation, Sonoda hopes to pass on a legacy of inspiration and resilience. “I hope to leave behind a future where challenges are seen not as barriers, but as opportunities to make the world a better place.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      As NASA partners with American industry to deliver science and technology payloads to the Moon, a dedicated team behind the scenes ensures every mission is grounded in strategy, compliance, and innovation. Leading that effort is Aubrie Henspeter, who advises all aspects of procurement for NASA’s Commercial Lunar Payload Services (CLPS) initiative—one of the cornerstone projects supporting the Artemis campaign. 
      Official portrait of Aubrie Henspeter. NASA/Bill Stafford With 20 years at NASA, Henspeter brings multifaceted experience to her role as CLPS procurement team lead in the Lunar & Planetary Exploration Procurement Office at Johnson Space Center in Houston. Her job is equal parts problem-solving, mentoring, and strategizing—all focused on enabling commercial partners to deliver NASA payloads to the lunar surface faster, more affordably, and more efficient than ever before. 
      “It’s been a great experience to see the full lifecycle of a project—from soliciting requirements to launching to the Moon,” said Henspeter. “We work to continuously adjust as the lunar industry grows and improve procurement terms and conditions by incorporating lessons learned.” 
      Henspeter leads a team of six contracting officers and contract specialists, managing workload priorities and supporting the continuity of seven commercial missions currently on contract. She also helps shape upcoming contract opportunities for future lunar deliveries, constantly seeking creative procurement strategies within a commercial firm-fixed-price framework. 
      NASA launched the CLPS initiative in 2018 to create a faster, more flexible way to partner with commercial companies for lunar deliveries. Thirteen vendors are participating as part of a multi-award contract, each eligible to compete for individual task orders to deliver NASA science and technology payloads to the Moon. These deliveries support Artemis goals by enabling new discoveries, testing key technologies, and preparing for long-term human exploration on the lunar surface. 
      Aubrie Henspeter receives the 2023 JSC Director’s Commendation Award from NASA Acting Associate Administrator Vanessa Wyche, right, and Johnson Space Center’s Acting Director Steve Koerner, far left, joined by her sons Elijah and Malik Merrick.NASA/James Blair  In May 2023, Henspeter received the NASA Exceptional Service Medal for her leadership on CLPS from 2018–2023. For her, the recognition reflects the team’s spirit and collaboration. 
      “I genuinely enjoy working on this project because of its lean, adaptable approach and the amazing team involved,” she said. “When all of us across NASA work together we are the most successful and can achieve our mission.” 
      That sense of collaboration and adaptability has shaped many of the insights Henspeter has gained throughout her career—lessons she now applies daily to help the team stay aligned and prepared. 
      One of those key lessons: always keep the contract current. 
      “It’s all good until it isn’t, and then everyone asks—what does the contract say?” she said. “Open communication and up-to-date documentation, no matter how minor the change, are essential.” 
      Over the course of her career, Henspeter has learned to prioritize preparation, adaptability, and strong working relationships. 
      “Preparation in procurement is conducting thorough market research, understanding the regulations, finding the gray areas, and developing a strategy that best meets the customer’s needs,” she said. “Adaptability means staying committed to the goal while remaining open and flexible on how to get there.” 
      That philosophy has helped her navigate everything from yearlong international contract negotiations with foreign partners to pivoting a customer from a sole-source request to a competitive procurement that ultimately saved costs and expanded opportunity. 
      “NASA is full of brilliant people, and it can be challenging to present alternatives. But through clear communication and data-driven recommendations, we find solutions that work,” Henspeter said. 
      NASA’s Commercial Lunar Payload Services (CLPS) team members at Kennedy Space Center in Florida for the launch of Firefly’s Blue Ghost Mission 1, including Aubrie Henspeter (second from left) and teammates Joshua Smith, LaToya Eaglin, Catherine Staggs, Shayla Martin, Tasha Beasley, Jennifer Ariens, Derek Maggard, and guests. As she looks to the Artemis Generation, Henspeter hopes to pass along a deep respect for teamwork and shared purpose. 
      “Every contribution matters. Whether it seems big or small, it makes a difference in achieving our mission,” she said. “I take pride in my role and in being part of the NASA team.” 
      Explore More
      2 min read NASA Expands Youth Engagement With New Scouting America Agreement
      Article 6 days ago 5 min read NASA Progresses Toward Crewed Moon Mission with Spacecraft, Rocket Milestones
      Article 7 days ago 5 min read Nilufar Ramji: Shaping Johnson’s Giant Leaps Forward 
      Article 1 week ago View the full article
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman emphasized the critical role of partnerships and the growing strategic importance of space during his remarks at the 2nd International AeroSpace Power Conference in Rome.

      View the full article
    • By Space Force
      U.S. Space Force Chief of Space Operations Gen. Chance Saltzman and Italian Air Force Chief of Staff Lt. Gen. Luca Goretti signed a statement of understanding.

      View the full article
    • By NASA
      6 min read
      Quantum Sensing via Matter-Wave Interferometry Aboard the International Space Station
      Future space missions could use quantum technologies to help us understand the physical laws that govern the universe, explore the composition of other planets and their moons, gain insights into unexplained cosmological phenomena, or monitor ice sheet thickness and the amount of water in underground aquafers on Earth.
      Upgraded hardware being prepared at Jet Propulsion Lab for launch and install into the Cold Atom Lab on the International Space Station. The Science Module in the background enables CAL researchers to conduct atom interferometry research in Earth’s orbit. Credit: NASA/JPL-Caltech NASA’s Cold Atom Lab (CAL), a first-of-its-kind facility aboard the International Space Station, has performed a series of trailblazing experiments based on the quantum properties of ultracold atoms. The tool used to perform these experiments is called an atom interferometer, and it can precisely measure gravity, magnetic fields, and other forces.
      Atom interferometers are currently being used on Earth to study the fundamental nature of gravity and are also being developed to aid aircraft and ship navigation, but use of an atom interferometer in space will enable innovative science capabilities.
      Physicists have been eager to apply atom interferometry in space, both to enable new measurements for space science and to capitalize on the extended free-fall conditions found in space. This could enable researchers to achieve unprecedented performance from these quantum sensors.
      These interferometers, however, require exquisitely sensitive equipment, and they were previously considered too fragile to function for extended periods without hands-on attention. The Cold Atom Lab, which is operated remotely from Earth, has now demonstrated that it is possible to conduct atom interferometry in space. The CAL Science Team has published two papers so far documenting these experimental milestones.
      Depiction of the atom interferometer (AI) setup onboard the ISS in CAL (on the right), showing the interior components of the instrument, and the path of a retro-reflected laser beam (red) inside the vacuum system. The expanded image on the left shows the beam entering the vacuum chamber through a window and between pairs of traces on the atom chip, which are used to confine and cool the atoms to ultracold temperatures. Credit: NASA/JPL-Caltech The results of the first study, published in the November 2023 issue of Nature, described the demonstration of simultaneous atom interferometry with both rubidium and potassium quantum gases for the first time in space. The dual-species atom interferometer not only exhibited robust and repeatable operation of atom interferometry in Earth orbit, but it also served as a pathfinder for future experiments that aim to use quantum gases to test the universality of free fall, a key tenet of Einstein’s theory of general relativity.
      In the second study, the results of which were featured in the August 2024 issue of Nature Communications, members of the science team used the CAL atom interferometer to measure subtle vibrations of the space station and to remotely measure the frequency of the atom interferometer laser— the first time ultra-cold atoms have been used to detect changes in the surrounding environment in space. This paper also reported on the demonstration of the wave-like nature of matter persisting for the longest ever freefall time (over a tenth of a second) in space.
      “Reaching these milestones was incredibly challenging, and our success was not always a given,” said Jason Williams, the Cold Atom Lab project scientist at NASA’s Jet Propulsion Laboratory in Southern California. “It took dedication and a sense of adventure by the team to make this happen.”
      Space-based sensors that can measure gravity with high precision have a wide range of potential applications. They could reveal the composition of planets and moons in our solar system, because different materials have different densities that create subtle variations in gravity.
      The U.S.-German GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) mission is currently collecting gravity measurements using classical sensors that detect slight changes in gravity to track the movement of water and ice on Earth. A future mission using atom interferometry could provide better precision and stability, revealing even more detail about surface mass changes.
      Precise measurements of gravity could also offer insights into the nature of dark matter and dark energy, two major cosmological mysteries. Dark matter is an invisible substance that makes up about 27% of the universe, while the “regular” matter that composes planets, stars, and everything else we can see makes up only 5%. Dark energy makes up the remaining 68% of the universe and is the driver of the universe’s accelerating expansion.
      “Atom interferometry could also be used to test Einstein’s theory of general relativity in new ways,” said University of Virginia professor Cass Sackett, a Cold Atom Lab principal investigator. “This is the basic theory explaining the large-scale structure of our universe, and we know that there are aspects of the theory that we don’t understand correctly. This technology may help us fill in those gaps and give us a more complete picture of the reality we inhabit.”
      About the size of a minifridge, the Cold Atom Lab launched to the space station in 2018 with the goal of advancing quantum science by placing a long-term facility in the microgravity environment of low Earth orbit. The lab cools atoms to almost absolute zero, or minus 459 degrees Fahrenheit (minus 273 degrees Celsius). At this temperature, some atoms can form a Bose-Einstein condensate, a state of matter in which all atoms essentially share the same quantum identity. As a result, some of the atoms’ typically microscopic quantum properties become macroscopic, making them easier to study.
      Quantum properties can sometimes cause atoms to act like solid objects and sometimes like waves. Scientists don’t yet entirely understand how the building blocks of matter can transition between such different physical behaviors, but they’re using quantum technology like what’s available on the Cold Atom Lab to seek answers.
      In microgravity, Bose-Einstein condensates can reach colder temperatures and can exist for longer, giving scientists more opportunities to study them. The atom interferometer is among several tools in the CAL facility enabling precision measurements by harnessing the quantum nature of atoms.
      Dual-species atom interferometry in space. (Left) Normalized population for ultracold gases of potassium (blue) and rubidium (red) in one of two output states following a simultaneous dual-species atom interferometry sequence. (Right) Correlations observed in the relative population of potassium and rubidium output states. Credit: NASA/JPL-Caltech Due to its wave-like behavior, a single atom can simultaneously travel two physically separate paths. If gravity or other forces are acting on those waves, scientists can measure that influence by observing how the waves recombine and interact.
      “I expect that space-based atom interferometry will lead to exciting new discoveries, fantastic quantum technologies impacting everyday life, and will transport us into a quantum future,” said Nick Bigelow, a professor at University of Rochester in New York and Cold Atom Lab principal investigator for a consortium of U.S. and German scientists who co-authored the studies cited above.
      Designed and built at the NASA Jet Propulsion Laboratory, Cold Atom Lab is sponsored by the Biological and Physical Sciences (BPS) Division of NASA’s Science Mission Directorate at the Agency’s headquarters in Washington DC and the International Space Station Program at NASA’s Johnson Space Center in Houston, Texas. The work carried out at the Jet Propulsion Laboratory, California Institute of Technology, was executed under a contract with the National Aeronautics and Space Administration.
      Learn more about Cold Atom Lab at https://coldatomlab.jpl.nasa.gov/
      Just how cold are the atoms in Cold Atom Lab? Find out at https://www.jpl.nasa.gov/news/news.php?feature=7311
      To learn more about the Cold Atom Lab’s recent upgrades visit https://www.jpl.nasa.gov/news/upgrading-the-space-stations-cold-atom-lab-with-mixed-reality and https://www.jpl.nasa.gov/news/news.php?feature=7660
      Project Lead: Kamal Oudrhiri, Jet Propulsion Laboratory, California Institute of Technology
      Sponsoring Organization:  Biological and Physical Sciences Division (BPS)
      Share








      Details
      Last Updated May 06, 2025 Related Terms
      Technology Highlights Biological & Physical Sciences Cold Atom Laboratory (CAL) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) Science-enabling Technology View the full article
  • Check out these Videos

×
×
  • Create New...