Jump to content

NASA Announces Teams for 2025 Student Launch Challenge


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Students raise their hands in celebration and cheer after a successful launch of their vehicle in the 2024 Student Launch competition.
Students celebrate after a successful performance in the 2024 Student Launch competition at Bragg Farms in Toney, Alabama.
NASA

NASA has selected 71 teams from across the U.S. to participate in its 25th annual Student Launch Challenge, one of the agency’s Artemis Student Challenges. The competition is aimed at inspiring Artemis Generation students to explore science, technology, engineering, and math (STEM) for the benefit of humanity.

As part of the challenge, teams will design, build, and fly a high-powered amateur rocket and scientific payload. They also must meet documentation milestones and undergo detailed reviews throughout the school year.

The nine-month-long challenge will culminate with on-site events starting on April 30, 2025. Final launches are scheduled for May 3, at Bragg Farms in Toney, Alabama, just minutes north of NASA’s Marshall Space Flight Center in Huntsville, Alabama. Teams are not required to travel for their final launch, having the option to launch from a qualified site. Details are outlined in the Student Launch Handbook.

Each year, NASA updates the university payload challenge to reflect current scientific and exploration missions. For the 2025 season, the payload challenge will again take inspiration from the Artemis missions, which seek to land the first woman and first person of color on the Moon, and pave the way for future human exploration of Mars.

As Student Launch celebrates its 25th anniversary, the payload challenge will include reports from STEMnauts, non-living objects representing astronauts. The STEMnaut crew must relay real-time data to the student team’s mission control via radio frequency, simulating the communication that will be required when the Artemis crew achieves its lunar landing.

University and college teams are required to meet the 2025 payload requirements set by NASA, but middle and high school teams have the option to tackle the same challenge or design their own payload experiment.

Student teams will undergo detailed reviews by NASA personnel to ensure the safety and feasibility of their rocket and payload designs. The team closest to their target will win the Altitude Award, one of multiple awards presented to teams at the end of the competition. Other awards include overall winner, vehicle design, experiment design, and social media presence.

In addition to the engineering and science objectives of the challenge, students must also participate in outreach efforts such as engaging with local schools and maintaining active social media accounts. Student Launch is an all-encompassing challenge and aims to prepare the next generation for the professional world of space exploration.

The Student Launch Challenge is managed by Marshall’s Office of STEM Engagement (OSTEM). Additional funding and support are provided by NASA’s OSTEM via the Next Gen STEM project, NASA’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies.

For more information about Student Launch, visit:

Taylor Goodwin
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
taylor.goodwin@nasa.gov

Share

Details

Last Updated
Oct 04, 2024
Editor
Beth Ridgeway

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Northrop Grumman Commercial Resupply Services 23 Launch
    • By European Space Agency
      Week in images: 08-12 September 2025
      Discover our week through the lens
      View the full article
    • By NASA
      NSTGRO Homepage
      Andrew Arends
      University of California, Davis
      Astronaut-Powered Laundry Machine
      Allan Attia
      Stanford University
      Computational Modeling of Lithium Magnetoplasmadynamic Thruster for Nuclear Electric Propulsion
      Michael Auth
      University of California, Santa Barbara
      Non-Contact, Real-Time Diagnostics of Battery Aging in 18650 Cells During the Lunar Night Using Acoustic Spectroscopy
      Nicholas Brennan
      Cornell University
      Spin Wave-Based Neuromorphic Coprocessor for Advanced AI Applications
      John Carter
      Purdue University
      Spectroscopic Measurements and Kinetic Modeling of Non-Boltzmann CN for Entry Systems Modeling
      Thomas Clark
      University of Colorado, Boulder
      Data-Driven Representations of Trajectories in Cislunar Space
      Nicholas Cmkovich
      University of Wisconsin-Madison
      Development of Radiation Tolerant Additively Manufactured Refractory Compositionally Complex Alloys
      Kara Hardy
      Michigan Technological University
      Design and Optimization of Cuttlebone-Inspired Cellular Materials Using Turing Systems
      Tyler Heggenes
      Utah State University
      Mitigating Spacecraft Charging Issues Through High-Precision, Temperature-Dependent Measurements of Dynamic Radiation Induced Conductivity
      Joseph Hesse-Withbroe
      University of Colorado, Boulder
      Decreasing Astronaut Radiation Doses with Magnetic Shields
      Niya Hope-Glenn
      Massachusetts Institute of Technology
      Investigating the Selectivity of CO2 Hydrogenation to Ethylene in a Plasma Reactor for Mars ISRU
      Adrianna Hudyma
      University of Minnesota
      Biorthogonal Translation System for Production of Pharmaceuticals During Space Missions
      Tushaar Jain
      Carnegie Mellon University
      Towards On-Demand Planetary Landing Through On-Board Autonomous Mapping and Cross-Modality Map Relative Localization
      Devin Johnson
      Purdue University
      Numerical and Experimental Methodology to Optimize Propellant Injection, Mixing, and Response in Rotating Detonation Engines
      Jack Joshi
      University of Texas at Austin
      State Representations for Measurement Fusion and Uncertainty Propagation in Cislunar Regime
      John Knoll
      William Marsh Rice University
      Dexterous Manipulation via Vision-Intent-Action Models
      Joseph Ligresti
      Purdue University
      Effects of Vacuum Conditions on FORP Reactivity and Long-Term Viability of MON-25/MMH Thrusters
      Alexander Madison
      University of Central Florida
      Hybrid Microwave Sintering of Lunar Regolith with 2.45GHz and 18-28GHz
      Aurelia Moriyama-Gurish
      Yale University
      Investigating Fundamental High Strain Rate Deformation Mechanisms to Bridge the Experiment-Computation Gap and Local Thermal Shock Response in C103
      Sophia Nowak
      University of Wisconsin-Madison
      Pulsed Laser System for Calibration of High Resolution X-ray Microcalorimeters
      Jacob Ortega
      Missouri University of Science and Technology
      Forging the Future Lunar Settlement with In-Situ Aluminum Extraction
      John Riley O’Toole
      University of Michigan
      Laser-Based Measurements of Electron Properties in Hall Effect Thrusters with Non-Conventional Propellants Enabling for Cis-Lunar, Mars, and Deep Space Missions
      Cort Reinarz
      Texas A&M University
      Utilizing Biometrics in Closed-Loop Compression Garment Systems as a Countermeasure for Orthostatic Intolerance
      Erica Sawczynec
      University of Texas at Austin
      A Monolithic Cross-Dispersed Grism for Near-Infrared Spectroscopy
      Ingrid Shan
      California Institute of Technology
      Micro-Architected Metallic Lattices for Lunar Dust Mitigation
      Pascal Spino
      Massachusetts Institute of Technology
      Centimeter-Scale Robots for Accessing Europa’s Benthic Zone
      Benjamin Stern
      Northwestern University, Chicago
      A Near-Field Thermoreflectance Approach for Nanoscale Thermal Mapping on Nanostructured Sige
      Titus Szobody
      William Marsh Rice University
      Leveraging Polymeric Photochemistry in Ionic Liquid-Based Mirror Synthesis for Space Telescope Optics
      Seneca Velling
      California Institute of Technology
      Constraining Weathering Kinetics Under Experimentally Simulated Venus Conditions
      Zhuochen Wang
      Georgia Institute of Technology
      Optimal Covariance Steering on Lie Groups for Precision Powered Descent
      Stanley Wang
      Stanford University
      Compact Robots with Long Reach for Space Exploration and Maintenance Tasks
      Thomas Westenhofer
      University of California, Irvine
      Kinetic Modeling of Carbon Mass Loss in Nuclear Thermal Propulsion
      Andrew Witty
      Purdue University
      Scalable Nanoporous Paints with High Solar Reflectance and Durability in Space Environments
      Jonathan Wrieden
      University of Maryland, College Park
      A Stochastic Model for Predicting Charged Orbital Debris Probability Densities by Utilizing Earth’s Electromagnetic Field to Guide Active Debris Remediation Efforts
      Jasen Zion
      California Institute of Technology
      Large-Format, Fast SNSPD Cameras Benchmarked with Neutral Atom Arrays
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Space Technology Research Grants
      NASA Space Technology Graduate Research Opportunities (NSTGRO)
      Technology
      Share
      Details
      Last Updated Sep 12, 2025 EditorLoura Hall Related Terms
      Space Technology Research Grants Space Technology Mission Directorate View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
    • By Space Force
      The first Proliferated Warfighter Space Architecture Tranche 1 Transport Layer space vehicles successfully launched from Vandenberg Space Force Base.

      View the full article
  • Check out these Videos

×
×
  • Create New...