Members Can Post Anonymously On This Site
Cobertura de la NASA del lanzamiento de Europa Clipper a una luna de Júpiter
-
Similar Topics
-
By Amazing Space
Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
What Would It Take to Say We Found Life?
We call this the podium test. What would it take for you personally to confidently stand up in front of an international audience and make that claim? When you put it in that way, I think for a lot of scientists, the bar is really high.
So of course, there would be obvious things, you know, a very clear signature of technology or a skeleton or something like that. But we think that a lot of the evidence that we might encounter first will be much more subtle. For example, chemical signs of life that have to be detected above a background of abiotic chemistry. And really, what we see might depend a lot on where we look.
On Mars, for example, the long history of exploration there gives us a lot of context for what we might find. But we’re potentially talking about samples that are billions of years old in those cases, and on Earth, those kinds of samples, the evidence of life is often degraded and difficult to detect.
On the ocean worlds of our outer solar system, so places like Jupiter’s moon Europa and Saturn’s moon Enceladus, there’s the tantalizing possibility of extant life, meaning life that’s still alive. But potentially we’re talking about exceedingly small amounts of samples that would have to be analyzed with a relatively limited amount of instrumentation that can be carried from Earth billions of miles away.
And then for exoplanets, these are planets beyond our own solar system. Really, what we’re looking for there are very large magnitude signs of life that can be detectable through a telescope from many light-years away. So changes like the oxygenation of Earth’s atmosphere or changes in surface color.
So any one of those things, if they rose to the suspicion of being evidence of life, would be really heavily scrutinized in a very sort of specific and custom way to that particular observation. But I think there are also some general principles that we can follow. And the first is just: Are we sure we’re seeing what we think we’re seeing? Many of these environments are not very well known to us, and so we need to convince ourselves that we’re actually seeing a clear signal that represents what we think it represents.
Carl Sagan once said, “Life is the hypothesis of last resort,” meaning that we ought to work hard for such a claim to rule out alternative possibilities. So what are those possibilities? One is contamination. The spacecraft and the instruments that we use to look for evidence of life are built in an environment, Earth, that is full of life. And so we need to convince ourselves that what we’re seeing is not evidence of our own life, but evidence of indigenous life.
If that’s the case, we should ask, should life of the type we’re seeing live there? And finally, we need to ask, is there any other way than life to make that thing, any of the possible abiotic processes that we know and even the ones that we don’t know? And as you can imagine, that will be quite a challenge.
Once we have a piece of evidence in hand that we really do think represents evidence of life, now we can begin to develop hypotheses. For example, do we have separate independent lines of evidence that corroborate what we’ve seen and increase our confidence of life?
Ultimately, all of this has to be looked at hard by the entire scientific community, and in that sense, I think the really operative word in our question is we. What does it take to say we found evidence of life? Because really, the answer, I think, depends on the full scientific community scrutinizing and skepticizing this observation to finally say that we scientists, we as a community and we as humanity found life.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Sep 10, 2025 Related Terms
Astrobiology Mars Perseverance (Rover) Science & Research Science Mission Directorate Explore More
6 min read NASA’s Webb Observes Immense Stellar Jet on Outskirts of Our Milky Way
A blowtorch of seething gasses erupting from a volcanically growing monster star has been captured…
Article 21 minutes ago 7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery
Article 1 day ago 6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e
Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb…
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This artist’s concept shows a brown dwarf — an object larger than a planet but not massive enough to kickstart fusion in its core like a star. Brown dwarfs are hot when they form and may glow like this one, but over time they get closer in temperature to gas giant planets like Jupiter. NOIRLab/NSF/AURA/R. Proctor An unusual cosmic object is helping scientists better understand the chemistry hidden deep in Jupiter and Saturn’s atmospheres — and potentially those of exoplanets.
Why has silicon, one of the most common elements in the universe, gone largely undetected in the atmospheres of Jupiter, Saturn, and gas planets like them orbiting other stars? A new study using observations from NASA’s James Webb Space Telescope sheds light on this question by focusing on a peculiar object that astronomers discovered by chance in 2020 and called “The Accident.”
The results were published on Sept. 4 in the journal Nature.
As shown in this graphic, brown dwarfs can be far more massive than even large gas planets like Jupiter and Saturn. However, they tend to lack the mass that kickstarts nuclear fusion in the cores of stars, causing them to shine. NASA/JPL-Caltech The Accident is a brown dwarf, a ball of gas that’s not quite a planet and not quite a star. Even among its already hard-to-classify peers, The Accident has a perplexing mix of physical features, some of which have been previously seen in only young brown dwarfs and others seen only in ancient ones. Because of those features, it slipped past typical detection methods before being discovered five years ago by a citizen scientist participating in Backyard Worlds: Planet 9. The program lets people around the globe look for new discoveries in data from NASA’s now-retired NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer), which was managed by NASA’s Jet Propulsion Laboratory in Southern California.
The brown dwarf nicknamed “The Accident” can be seen moving in the bottom left corner of this video, which shows data from NASA’s now-retired NEOWISE (Near-Earth Object Wide-Field Infrared Survey Explorer), launched in 2009 with the moniker WISE. NASA/JPL-Caltech/Dan Caselden The Accident is so faint and odd that researchers needed NASA’s most powerful space observatory, Webb, to study its atmosphere. Among several surprises, they found evidence of a molecule they couldn’t initially identify. It turned out to be a simple silicon molecule called silane (SiH4). Researchers have long expected — but been unable — to find silane not only in our solar system’s gas giants, but also in the thousands of atmospheres belonging to brown dwarfs and to the gas giants orbiting other stars. The Accident is the first such object where this molecule has been identified.
Scientists are fairly confident that silicon exists in Jupiter and Saturn’s atmospheres but that it is hidden. Bound to oxygen, silicon forms oxides such as quartz that can seed clouds on hot gas giants, bearing a resemblance to dust storms on Earth. On cooler gas giants like Jupiter and Saturn, these types of clouds would sink far beneath lighter layers of water vapor and ammonia clouds, until any silicon-containing molecules are deep in the atmosphere, invisible even to the spacecraft that have studied those two planets up close.
Some researchers have also posited that lighter molecules of silicon, like silane, should be found higher up in these atmospheric layers, left behind like traces of flour on a baker’s table. That such molecules haven’t appeared anywhere except in a single, peculiar brown dwarf suggests something about the chemistry occurring in these environments.
“Sometimes it’s the extreme objects that help us understand what’s happening in the average ones,” said Faherty, a researcher at the American Museum of Natural History in New York City, and lead author on the new study.
Happy accident
Located about 50 light-years from Earth, The Accident likely formed 10 billion to 12 billion years ago, making it one of the oldest brown dwarfs ever discovered. The universe is about 14 billion years old, and at the time that The Accident developed, the cosmos contained mostly hydrogen and helium, with trace amounts of other elements, including silicon. Over eons, elements like carbon, nitrogen, and oxygen forged in the cores of stars, so planets and stars that formed more recently possess more of those elements.
Webb’s observations of The Accident confirm that silane can form in brown dwarf and planetary atmospheres. The fact that silane seems to be missing in other brown dwarfs and gas giant planets suggests that when oxygen is available, it bonds with silicon at such a high rate and so easily, virtually no silicon is left over to bond with hydrogen and form silane.
So why is silane in The Accident? The study authors surmise it is because far less oxygen was present in the universe when the ancient brown dwarf formed, resulting in less oxygen in its atmosphere to gobble up all the silicon. The available silicon would have bonded with hydrogen instead, resulting in silane.
“We weren’t looking to solve a mystery about Jupiter and Saturn with these observations,” said JPL’s Peter Eisenhardt, project scientist for the WISE (Wide-field Infrared Survey Explorer) mission, which was later repurposed as NEOWISE. “A brown dwarf is a ball of gas like a star, but without an internal fusion reactor, it gets cooler and cooler, with an atmosphere like that of gas giant planets. We wanted to see why this brown dwarf is so odd, but we weren’t expecting silane. The universe continues to surprise us.”
Brown dwarfs are often easier to study than gas giant exoplanets because the light from a faraway planet is typically drowned out by the star it orbits, while brown dwarfs generally fly solo. And the lessons learned from these objects extend to all kinds of planets, including ones outside our solar system that might feature potential signs of habitability.
“To be clear, we’re not finding life on brown dwarfs,” said Faherty. “But at a high level, by studying all of this variety and complexity in planetary atmospheres, we’re setting up the scientists who are one day going to have to do this kind of chemical analysis for rocky, potentially Earth-like planets. It might not specifically involve silicon, but they’re going to get data that is complicated and confusing and doesn’t fit their models, just like we are. They’ll have to parse all those complexities if they want to answer those big questions.”
More about WISE, Webb
A division of Caltech, JPL managed and operated WISE for NASA’s Science Mission Directorate. The mission was selected competitively under NASA’s Explorers Program managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. The NEOWISE mission was a project of JPL and the University of Arizona in Tucson, supported by NASA’s Planetary Defense Coordination Office.
For more information about WISE, go to:
https://www.nasa.gov/mission_pages/WISE/main/index.html
The James Webb Space Telescope is the world’s premier space science observatory, and an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
To learn more about Webb, visit:
https://science.nasa.gov/webb
News Media Contacts
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
Christine Pulliam
Space Telescope Science Institute, Baltimore, Md.
cpulliam@stsci.edi
2025-113
Share
Details
Last Updated Sep 09, 2025 Related Terms
James Webb Space Telescope (JWST) Brown Dwarfs Exoplanets The Search for Life Explore More
6 min read NASA Webb Looks at Earth-Sized, Habitable-Zone Exoplanet TRAPPIST-1 e
Scientists are in the midst of observing the exoplanet TRAPPIST-1 e with NASA’s James Webb…
Article 1 day ago 5 min read Glittering Glimpse of Star Birth From NASA’s Webb Telescope
This is a sparkling scene of star birth captured by NASA’s James Webb Space Telescope.…
Article 5 days ago 5 min read Astronomers Map Stellar ‘Polka Dots’ Using NASA’s TESS, Kepler
Scientists have devised a new method for mapping the spottiness of distant stars by using…
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Los nombres de los participantes irán en tarjetas de embarque a bordo de la misión Artemis II de la NASA en 2026.Crédito: NASA Read this press release in English here.
La NASA invita al público a unirse al vuelo de prueba Artemis II de la agencia en el que cuatro astronautas emprenderán un viaje alrededor de la Luna y de regreso a la Tierra para poner a prueba los sistemas y el hardware necesarios para la exploración del espacio profundo. Como parte de la iniciativa de la agencia “Envía tu nombre con Artemis II”, cualquiera puede asegurar su lugar a registrándose antes del 21 de enero.
Los nombres de los participantes en esta iniciativa viajarán en la nave espacial Orion y el cohete Sistema de Lanzamiento Espacial (SLS, por sus siglas en inglés) junto a los astronautas de la NASA Reid Wiseman, Victor Glover, Christina Koch y el astronauta de la CSA (Agencia Espacial Canadiense) Jeremy Hansen.
“Artemis II es un vuelo de prueba clave en nuestro esfuerzo por enviar de nuevo a seres humanos a la superficie de la Luna y desarrollar futuras misiones a Marte. También es una oportunidad para inspirar a personas de todo el mundo y darles la oportunidad de acompañarnos mientras lideramos el camino en la exploración humana hacia lugares más profundos en el espacio”, dijo Lori Glaze, administradora asociada interina en la Dirección de Misiones de Desarrollo de Sistemas de Exploración en la sede central de la NASA en Washington.
Los nombres recopilados se incluirán en una tarjeta de memoria SD que será cargada a bordo de Orion antes del lanzamiento. A cambio, los participantes pueden descargar una tarjeta de embarque con su nombre como un recuerdo coleccionable.
Para añadir tu nombre y recibir una tarjeta de embarque en español, visita el sitio web:
https://go.nasa.gov/TuNombreArtemis
Para añadir tu nombre y recibir una tarjeta de embarque en inglés, visita el sitio web:
https://go.nasa.gov/artemisnames
Como parte de una edad de oro de innovación y exploración, el vuelo de prueba Artemis II es el primer vuelo tripulado de la campaña Artemis de la NASA. Tendrá una duración aproximada de 10 días y despegará a más tardar en abril de 2026. Este es otro paso hacia nuevas misiones tripuladas de Estados Unidos a la superficie de la Luna que ayudarán a la agencia a prepararse para enviar a los primeros astronautas estadounidenses a Marte.
Para obtener más información acerca de esta misión, visita el sitio web (en inglés):
https://www.nasa.gov/mission/artemis-ii/
-fin-
Rachel Kraft / María José Viñas
Sede central, Washington
202-358-1600
rachel.h.kraft@nasa.gov / maria-jose.vinasgarcia@nasa.gov
Share
Details
Last Updated Sep 09, 2025 LocationNASA Headquarters Related Terms
NASA en español Artemis Artemis 2 Exploration Systems Development Mission Directorate Missions View the full article
-
By NASA
Northrop Grumman’s Cygnus cargo craft awaits its capture by the International Space Station’s Canadarm2 robotic arm, commanded by NASA astronaut Matthew Dominick on Aug. 6, 2024.Credit: NASA NASA, Northrop Grumman, and SpaceX are targeting no earlier than 6:11 p.m. EDT, Sunday, Sept. 14, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. The mission is known as NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23.
Watch the agency’s launch and arrival coverage on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.
Filled with more than 11,000 pounds of supplies, the Northrop Grumman Cygnus XL spacecraft, carried on a SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft.
Following arrival, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus XL on Wednesday, Sept. 17, before robotically installing the spacecraft to the Unity module’s Earth-facing port for cargo unloading.
Highlights of space station research and technology demonstrations, facilitated by delivery aboard this Cygnus XL, include materials to produce semiconductor crystals in space and equipment to develop improvements for cryogenic fuel tanks. The spacecraft also will deliver a specialized UV light system to prevent the growth of microbe communities that form in water systems and supplies to produce pharmaceutical crystals that could treat cancer and other diseases.
Media interested in speaking to a science subject matter expert should contact Sandra Jones at: sandra.p.jones@nasa.gov. A copy of NASA’s media accreditation policy is available on the agency’s website.
The Cygnus XL spacecraft is scheduled to remain at the orbiting laboratory until March before it departs and burns up in the Earth’s atmosphere. Northrop Grumman has named the spacecraft the S.S. William “Willie” McCool, in honor of the NASA astronaut who perished in 2003 during the space shuttle Columbia accident.
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Wednesday, Sept. 10:
1 p.m. – International Space Station National Laboratory Science Webinar with the following participants:
Dr. Liz Warren, associate chief scientist, NASA’s International Space Station Program Research Office Phillip Irace, science program director, International Space Station National Laboratory Paul Westerhoff, regents professor, School of Sustainable Engineering and the Built Environment, Arizona State University Robert Garmise, director of formulation development; exploratory biopharmaceuticals, Bristol Myers Squibb Joel Sercel, founder and CEO, TransAstra Corporation and Mike Lewis, senior vice president, customer innovation, Voyager Technologies Mohammad Kassemi, research professor, Case Western University Media who wish to participate must register for Zoom access no later than one hour before the start of the webinar.
The webinar will be recorded and shared to the International Space Station National Lab’s YouTube channel following the event. Ask questions in advance using social accounts @ISS_CASIS and @Space_Station.
Friday, Sept 12
11:30 a.m. – Prelaunch media teleconference with the following participants:
Dina Contella, deputy manager, NASA’s International Space Station Program Dr. Liz Warren, associate chief scientist, NASA’s International Space Station Program Research Office Ryan Tintner, vice president, Civil Space Systems, Northrop Grumman Jared Metter, director, Flight Reliability, SpaceX Media who wish to participate by phone must request dial-in information by 5 p.m., Thursday, Sept. 11, by contacting the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov.
Audio of the teleconference will stream live on the agency’s website and YouTube.
Sunday, Sept. 14:
5:50 p.m. – Launch coverage begins on NASA+ and Amazon Prime
6:11 p.m. – Launch
Wednesday, Sept. 17:
5 a.m. – Arrival coverage begins on NASA+ and Amazon Prime
6:35 a.m. – Capture
8 a.m. – Installation coverage begins on NASA+ and Amazon Prime
NASA website launch coverage
Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning no earlier than 5:50 p.m. on Sept. 14, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on our International Space Station blog for updates.
Attend Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
Let people know you’re watching the mission on X, Facebook, and Instagram by following and tagging these accounts:
X: @NASA, @NASASpaceOps, @NASAKennedy, @Space_Station, @ISS_CASIS
Facebook: NASA, NASAKennedy, ISS, ISS National Lab
Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab
Coverage en Espanol
Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
Learn more about the mission at:
https://www.nasa.gov/mission/nasas-northrop-grumman-crs-23/
-end-
Josh Finch / Jimi Russell
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
Steven Siceloff
Kennedy Space Center, Fla.
321-876-2468
steven.p.siceloff@nasa.gov
Sandra Jones / Joseph Zakrzewski
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
Share
Details
Last Updated Sep 08, 2025 EditorLauren E. LowLocationNASA Headquarters Related Terms
Northrop Grumman Commercial Resupply Commercial Resupply International Space Station (ISS) ISS Research View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.