Members Can Post Anonymously On This Site
NASA Prepares for Lunar Terrain Vehicle Testing
-
Similar Topics
-
By Amazing Space
Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
-
By NASA
Credit: NASA NASA has selected Troy Sierra JV, LLC of Huntsville, Alabama, to provide engineering, research, and scientific support at the agency’s Glenn Research Center in Cleveland.
The Test Facility Operations, Maintenance, and Engineering Services III contract is a cost-plus-fixed-fee, indefinite-delivery/indefinite-quantity contract with a maximum potential value of approximately $388.3 million. The performance period begins Jan. 1, 2026, with a three-year base period followed by a two-year option, and a potential six-month extension through June 2031.
This contract will provide and manage the engineering, technical, manufacturing, development, operations, maintenance, inspection, and certification support services needed to conduct aerospace testing in NASA Glenn’s facilities and laboratories.
For information about NASA and other agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Jan Wittry
Glenn Research Center, Cleveland
216-433-5466
jan.m.wittry-1@nasa.gov
Share
Details
Last Updated Sep 12, 2025 LocationNASA Headquarters Related Terms
Glenn Research Center View the full article
-
By NASA
5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
“We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
“I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
“There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
Share
Details
Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care
Article 1 week ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Ames Science Directorate’s Stars of the Month: September 2025
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Earth Science Star: Taejin Park
Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
Space Science and Astrobiology Star: Lydia Schweitzer
Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
Space Science and Astrobiology Star: Rachel Morgan
Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, complete the signing of a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025NASA/Mark Knopp As NASA inspires the world through discovery in a new era of innovation and exploration, NASA’s Langley Research Center in Hampton, Virginia, and Embry-Riddle Aeronautical University are working together to advance research, educational opportunities, and workforce development to enable the next generation of aerospace breakthroughs.
The collaborative work will happen through a Space Act Agreement NASA Langley and Embry-Riddle signed during a ceremony held Thursday at NASA Langley. The agreement will leverage NASA Langley’s aerospace expertise and Embry-Riddle’s specialized educational programs and research to drive innovation in aerospace, research, education, and technology, while simultaneously developing a highly skilled workforce for the future of space exploration and advanced air mobility.
Dr. Trina Marsh Dyal, NASA Langley’s acting center director, and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle, presided over the ceremony.
“NASA Langley values opportunities to partner with colleges and universities on research and technology demonstrations that lay the foundation for tomorrow’s innovations,” said Dyal. “These collaborations play an essential role in advancing aeronautics, space exploration, and science initiatives that benefit NASA, industry, academia, and the nation.”
In addition to forging a formal partnership between NASA Langley and Embry-Riddle, the agreement lays the framework to support Embry-Riddle’s development of an Augmented Reality tool by using NASA sensor technology and data. Augmented Reality uses computer-generated elements to enhance a user’s real-world environment and can help users better visualize data. Incorporating model and lunar landing data from Navigation Doppler Lidar, a technology developed at NASA Langley, this tool will enhance visualization and training for entry, descent, and landing, and deorbit, descent, and landing systems — advancing our capabilities for future Moon and Mars missions.
NASA’s Langley Research Center Acting Director Dr. Trina Marsh Dyal and Dr. Jeremy Ernst, vice president for Research and Doctoral Programs at Embry-Riddle Aeronautical University, sign a Space Act Agreement during a ceremony held at NASA Langley in Hampton, Virginia on Thursday, Sept. 11, 2025.NASA/Mark Knopp “As we work to push the boundaries of what is possible and solve the complexities of a sustained human presence on the lunar surface and Mars, this partnership with Embry-Riddle will not only support NASA’s exploration goals but will also ensure the future workforce is equipped to maintain our nation’s aerospace leadership,” Dyal said.
Embry-Riddle educates more than 30,000 students through its residential campuses in Daytona Beach, Florida, and Prescott, Arizona, and through online programs offered by its
Worldwide Campus, which counts more than 100 locations across the globe, including a site at Naval Station Norfolk in Virginia.
“We are thrilled that this partnership with NASA Langley is making it possible for our faculty, students, and staff to engage with NASA talent and collaborate on cutting-edge aerospace applications and technology,” said Ernst. “This partnership also presents an incredible opportunity for our students to augment direct research experiences, enhancing career readiness as they prepare to take on the aerospace challenges of tomorrow.”
NASA is committed to partnering with a wide variety of domestic and international partners, in academia, industry, and across the government, to successfully accomplish its diverse missions, including NASA’s Artemis campaign which will return astronauts to the Moon and help pave the way for future human missions to Mars.
For more information on programs at NASA Langley, visit:
https://nasa.gov/langley
Brittny McGraw
NASA Langley Research Center
Share
Details
Last Updated Sep 11, 2025 Related Terms
Langley Research Center Explore More
4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care
Article 1 week ago 4 min read Strap In! NASA Aeroshell Material Takes Extended Space Trip
Article 2 weeks ago 4 min read Washington State Student Wins 2025 NASA Art Contest
Article 2 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.