Jump to content

October’s Night Sky Notes: Catch Andromeda Rising!


Recommended Posts

  • Publishers
Posted
3 Min Read

October’s Night Sky Notes: Catch Andromeda Rising!

Composite image showing a spiral galaxy. The dust and gas is illuminated by bright stars,
Hot stars burn brightly in this new image from NASA’s Galaxy Evolution Explorer, showing the ultraviolet side of a familiar face. At approximately 2.5 million light-years away, the Andromeda galaxy, or M31, is our Milky Way’s largest galactic neighbor.
Credits:
NASA

If you’re thinking of a galaxy, the image in your head is probably the Andromeda Galaxy! Studies of this massive neighboring galaxy, also called M31, have played an incredibly important role in shaping modern astronomy. As a bonus for stargazers, the Andromeda Galaxy is also a beautiful sight.

Sky map highlighting the Cassiopeia, Perseus, Andromeda and Pegasus constellations, with the Andromeda Galaxy circled
Spot the Andromeda Galaxy! M31’s more common name comes from its parent constellation, which becomes prominent as autumn arrives in the Northern Hemisphere. Surprising amounts of detail can be observed with unaided eyes when seen from dark sky sites. Hints of it can even be made out from light polluted areas. Use the Great Square of Pegasus or the Cassiopeia constellation as guides to find it.
Credit: Stellarium Web

Have you heard that all the stars you see at night are part of our Milky Way galaxy? While that is mostly true, one star-like object located near the border between the constellations of Andromeda and Cassiopeia appears fuzzy to unaided eyes. That’s because it’s not a star, but the Andromeda Galaxy, its trillion stars appearing to our eyes as a 3.4 magnitude patch of haze. Why so dim? Distance! It’s outside our galaxy, around 2.5 million light years distant – so far away that the light you see left M31’s stars when our earliest ancestors figured out stone tools. Binoculars show more detail: M31’s bright core stands out, along with a bit of its wispy, saucer-shaped disc. Telescopes bring out greater detail but often can’t view the entire galaxy at once. Depending on the quality of your skies and your magnification, you may be able to make out individual globular clusters, structure, and at least two of its orbiting dwarf galaxies: M110 and M32. Light pollution and thin clouds, smoke, or haze will severely hamper observing fainter detail, as they will for any “faint fuzzy.” Surprisingly, persistent stargazers can still spot M31’s core from areas of moderate light pollution as long as skies are otherwise clear.

Generated version of the Andromeda Galaxy and its companion galaxies M32 and M110.
Generated version of the Andromeda Galaxy and its companion galaxies M32 and M110.
Stellarium Web

Modern astronomy was greatly shaped by studies of the Andromeda Galaxy. A hundred years ago, the idea that there were other galaxies beside our own was not widely accepted, and so M31 was called the “Andromeda Nebula.” Increasingly detailed observations of M31 caused astronomers to question its place in our universe – was M31 its own “island universe,” and not part of our Milky Way? Harlow Shapley and Heber Curtis engaged in the “Great Debate” of 1920 over its nature. Curtis argued forcefully from his observations of dimmer than expected nova, dust lanes, and other oddities that the “nebula” was in fact an entirely different galaxy from our own. A few years later, Edwin Hubble, building on Henrietta Leavitt’s work on Cepheid variable stars as a “standard candle” for distance measurement, concluded that M31 was indeed another galaxy after he observed Cepheids in photos of Andromeda, and estimated M31’s distance as far outside our galaxy’s boundaries. And so, the Andromeda Nebula became known as the Andromeda Galaxy.

purple-hued illustration of Andromeda galaxy's halo, with background quasars (shown with yellowish dots) scattered throughout
This illustration shows the location of the 43 quasars scientists used to probe Andromeda’s gaseous halo. These quasars—the very distant, brilliant cores of active galaxies powered by black holes—are scattered far behind the halo, allowing scientists to probe multiple regions. Looking through the immense halo at the quasars’ light, the team observed how this light is absorbed by the halo and how that absorption changes in different regions. By tracing the absorption of light coming from the background quasars, scientists are able to probe the halo’s material.
NASA, ESA, and E. Wheatley (STScI)

These discoveries inspire astronomers to this day, who continue to observe M31 and many other galaxies for hints about the nature of our universe. One of the Hubble Space Telescope’s longest-running observing campaigns was a study of M31: the Panchromatic Hubble Andromeda Treasury (PHAT). Dig into NASA’s latest discoveries about the Andromeda Galaxy, on their Messier 31 page.

Originally posted by Dave Prosper: September 2021

Last Updated by Kat Troche: September 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major The Andromeda galaxy, also known as Messier 31 (M31), is a glittering beacon in this image released on June 25, 2025, in tribute to the groundbreaking legacy of astronomer Dr. Vera Rubin, whose observations transformed our understanding of the universe. In the 1960s, Rubin and her colleagues studied M31 and determined that there was some unseen matter in the galaxy that was affecting how the galaxy and its spiral arms rotated. This unknown material was named “dark matter.”
      M31 is the closest spiral galaxy to the Milky Way at a distance of about 2.5 million light-years. Astronomers use Andromeda to understand the structure and evolution of our own spiral, which is much harder to do since Earth is embedded inside the Milky Way.
      Learn more about this image and experience in sound, too.
      Image credit: X-ray: NASA/CXO/UMass/Z. Li & Q.D. Wang, ESA/XMM-Newton; Infrared: NASA/JPL-Caltech/WISE, Spitzer, NASA/JPL-Caltech/K. Gordon (U. Az), ESA/Herschel, ESA/Planck, NASA/IRAS, NASA/COBE; Radio: NSF/GBT/WSRT/IRAM/C. Clark (STScI); Ultraviolet: NASA/JPL-Caltech/GALEX; Optical: Andromeda, Unexpected © Marcel Drechsler, Xavier Strottner, Yann Sainty & J. Sahner, T. Kottary. Composite image processing: L. Frattare, K. Arcand, J.Major
      View the full article
    • By USH
      These images captured by the Curiosity rover in 2014 reveals yet another unexplained aerial phenomenon in the Martian atmosphere, a cigar-shaped object with a consistent width and rounded ends. 

      What makes this anomaly particularly compelling is the sharp clarity of the image. According to Jean Ward the stars in the background appear crisp and unblurred, indicating that the object is not the result of motion blur or a long exposure. Notably, the object appears in five separate frames over an 8-minute span, suggesting it is moving relatively slowly through space, uncharacteristic of a meteorite entering the atmosphere. It also lacks the fiery tail typically associated with atmospheric entry. 

      Rather than a meteor, the object more closely resembles a solid, elongated craft of unknown origin. When oriented horizontally, it even appears to feature a front-facing structure, possibly a porthole or raised dome, hinting at a cockpit or command module. 

      Whether this object is orbiting beyond the visible horizon or connected to the surface far in the distance, its sheer size is unmistakable. Its presence raises compelling questions, could this be further evidence of intelligently controlled craft, whether of extraterrestrial or covert human origin, navigating through Martian airspace?View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In the summer 2025 issue of the NASA History Office’s News & Notes newsletter, examples of leadership and critical decision-making in NASA’s history form the unifying theme. Among the topics discussed are NASA’s Shuttle-Centaur program, assessing donations to the NASA Archives, how the discovery of the first exoplanet orbiting a sun-like star catalyzed NASA’s exoplanet program, and Chief of the Medical Operations Office Charles A. Berry’s decisions surrounding crew health when planning the Project Gemini missions.

      Volume 42, Number 2
      Summer 2025
      Featured Articles
      From the Chief Historian
      By Brian Odom
      NASA’s is a history marked by critical decisions. From George Mueller’s 1963 decision for “all up” testing of the Saturn V rocket to Michael Griffin’s 2006 decision to launch a final servicing mission to the Hubble Space Telescope, the agency has continually met key inflection points with bold decisions. These choices, such as the decision to send a crewed Apollo 8 mission around the Moon in December 1968, stand at the center of the agency’s national legacy and promote confidence in times of crisis.  Continue Reading
      Shuttle-Centaur: Loss of Launch Vehicle Redundancy Leads to Discord
      By Robert Arrighi
      “Although the Shuttle/Centaur decision was very difficult to make, it is the proper thing to do, and this is the time to do it.” With those words on June 19, 1986, NASA Administrator James Fletcher canceled the intensive effort to integrate the Centaur upper stage with the Space Shuttle to launch the Galileo and Ulysses spacecraft. The decision, which was tied to increased safety measures following the loss of Challenger several months earlier, brought to the forefront the 1970s decision to launch all U.S. payloads with the Space Shuttle. Continue Reading
      Lewis Director Andy Stofan speaks at the Shuttle-Centaur rollout ceremony on August 23, 1985 at General Dynamics’s San Diego headquarters. Galileo mission crew members Dave Walker, Rick Hauck, and John Fabian were among those on stage. NASA A View into NASA’s Response to the Apollo 1 Tragedy
      By Kate Mankowski
      On January 27, 1967, Mission AS-204 (later known as Apollo 1) was conducting a simulated countdown when a fire suddenly broke out in the spacecraft, claiming the lives of astronauts Virgil I. “Gus” Grissom, Edward H. White, and Roger B. Chaffee. The disaster highlighted the risks that come with spaceflight and the work that still needed to be accomplished to meet President Kennedy’s challenge of going to the Moon before the end of the decade. With the complexity of the Apollo spacecraft, discerning the cause of the fire proved to be incredibly difficult. Continue Reading
      The Fight to Fund AgRISTARS
      By Brad Massey
      Robert MacDonald, the manager of NASA’s Large Area Crop Inventory Experiment (LACIE), was not pleased in January 1978 after he read a draft copy of the U.S. General Accounting Office’s (GAO’s) “Crop Forecasting by Satellite: Progress and Problems” report. The draft’s authors argued that LACIE had not achieved its goals of accurately predicting harvest yields in the mid-1970s. Therefore, congressional leaders should “be aware of the disappointing performance of LACIE to date when considering the future direction of NASA’s Landsat program and the plans of the Department of Agriculture.” Continue Reading
      The Hubble Space Telescope: The Right Project at the Right Time
      By Jillian Rael
      This year, NASA commemorates 35 years of the Hubble Space Telescope’s study of the cosmos. From observations of never-before-seen phenomena within our solar system, to the discovery of distant galaxies, the confirmation of the existence of supermassive black holes, and precision measurements of the universe’s expansion, Hubble has made incredible contributions to science, technology, and even art. Yet, for all its contemporary popularity, the Hubble program initially struggled for congressional approval and consequential funding. For its part, NASA found new ways to compromise and cut costs, while Congress evaluated national priorities and NASA’s other space exploration endeavors against the long-range value of Hubble. Continue Reading
      Within the tempestuous Carina Nebula lies “Mystic Mountain.”NASA/ESA/M. Livio/Hubble 20th Anniversary Team Appraisal: The Science and Art of Assessing Donations to the NASA Archives
      By Alan Arellano
      The major functions of an archivist center include appraising, arranging, describing, preserving, and providing access to historical records and documents. While together these are pillars of archival science, they are more of an art than a science in their application, fundamentally necessitating skilled decision making. Throughout the NASA archives, staff members make these decisions day in and day out. Continue Reading
      Orbit Shift: How 50 Pegasi b Helped Pull NASA Toward the Stars in the 1990s
      By Lois Rosson
      On October 20, 1995, the New York Times reported the detection of a distant planet orbiting a Sun-like star. The star, catalogued as 51 Pegasi by John Flamsteed in the 18th century, was visible to the naked eye as part of the constellation Pegasus—and had wobbled on its axis just enough that two Swiss astronomers were able to deduce the presence of another object exerting its gravitational pull on the star’s rotation. The discovery was soon confirmed by other astronomers, and 51 Pegasi b was heralded as the first confirmed exoplanet orbiting a star similar to our own Sun. Continue Reading
      Detail from an infographic about 51 Pegasi b and the significance of its discovery.NASA Four, Eight, Fourteen Days: Charles A. Berry, Gemini, and the Critical Steps to Living and Working in Space
      By Jennifer Ross-Nazzal
      In 1963, critical decisions had to be made about NASA’s upcoming Gemini missions if the nation were to achieve President John F. Kennedy’s lunar goals. Known as the bridge to Apollo, Project Gemini was critical to landing a man on the Moon by the end of the decade and returning him safely to Earth. The project would demonstrate that astronauts could rendezvous and dock their spacecraft to another space vehicle and give flight crews the opportunity to test the planned extravehicular capabilities in preparation for walking on the lunar surface on future Apollo flights. Perhaps most importantly, Gemini had to show that humans could live and work in space for long periods of time, a fiercely debated topic within and outside of the agency.  Continue Reading
      Dr. Charles Berry prepares to check the blood pressure of James A. McDivitt, Command Pilot for the Gemini IV mission. McDivitt is on the tilt table at the Aero Medical Area, Merritt Island, FL, where he and Gemini IV pilot Edward H. White II underwent preflight physicals in preparation for their four-day spaceflight.NASA Imagining Space: The Life and Art of Robert McCall
      By Sandra Johnson
      As we walked into Bob McCall’s Arizona home, it quickly became obvious that two talented and creative people lived there. Tasked with interviewing one of the first artists to be invited to join the NASA Art Program, our oral history team quickly realized the session with McCall would include a unique perspective on NASA’s history. We traveled to Arizona in the spring of 2000 to capture interviews with some of the pioneers of spaceflight and had already talked to an eclectic group of subjects in their homes, including a flight controller for both Gemini and Apollo, an astronaut who had flown on both Skylab and Space Shuttle missions, a former NASA center director, and two former Women’s Airforce Service Pilots (WASPs) who ferried airplanes during WWII. However, unlike most interviews, the setting itself provided a rare glimpse into the man and his inspiration.  Continue Reading
      Inside the Archives: Biomedical Branch Files
      By Alejandra Lopez
      The Biomedical Branch Files (1966–2008) in the Johnson Space Center archives showcase the inner workings of a NASA office established to perform testing to provide a better understanding of the impacts of spaceflight on the human body. Ranging from memos and notes to documents and reports, this collection is an invaluable resource on the biomedical research done with NASA’s Apollo, Skylab, Space Shuttle, and Space Station projects. Files in the collection cover work done by groups within the branch such as the Toxicology, Microbiology, Clinical, and Biochemistry Laboratories. It also reveals the branch’s evolution and changes in its decision-making process over the years. Continue Reading
      Dr. Carolyn S. Huntoon, shown here in 1972, became the Biomedical Branch’s first chief in 1977.NASA Download the Summer 2025 Edition More Issues of NASA History News and Notes Share
      Details
      Last Updated Jun 20, 2025 EditorMichele Ostovar Related Terms
      NASA History Newsletters Explore More
      5 min read NASA History News and Notes–Spring 2025
      Article 3 months ago 6 min read NASA History News and Notes – Winter 2024
      Article 6 months ago 7 min read NASA History News and Notes – Fall 2024
      Article 9 months ago Keep Exploring Discover Related Topics
      NASA History
      History Publications and Resources
      NASA Archives
      NASA Oral Histories
      View the full article
    • By European Space Agency
      The European Space Agency’s (ESA) newest planetary defender has opened its ‘eye’ to the cosmos for the first time. The Flyeye telescope’s ‘first light’ marks the beginning of a new chapter in how we scan the skies for new near-Earth asteroids and comets.
      View the full article
    • By NASA
      2 Min Read June’s Night Sky Notes: Seasons of the Solar System
      Two views of the planet Uranus appear side-by-side for comparison. At the top, left corner of the left image is a two-line label. The top line reads Uranus November 9, 2014. The bottoms line reads HST WFC3/UVIS. At the top, left corner of the right image is the label November 9, 2022. At the left, bottom corner of each image is a small, horizontal, white line. In both panels, over this line is the value 25,400 miles. Below the line is the value 40,800 kilometers. At the top, right corner of the right image are three, colored labels representing the color filters used to make these pictures. Located on three separate lines, these are F467M in blue, F547M in green, and F485M in red. On the bottom, right corner of the right image are compass arrows showing north toward the top and east toward the left. Credits:
      NASA by Kat Troche of the Astronomical Society of the Pacific
      Here on Earth, we undergo a changing of seasons every three months. But what about the rest of the Solar System? What does a sunny day on Mars look like? How long would a winter on Neptune be? Let’s take a tour of some other planets and ask ourselves what seasons might look like there.
      Martian Autumn
      Although Mars and Earth have nearly identical axial tilts, a year on Mars lasts 687 Earth days (nearly 2 Earth years) due to its average distance of 142 million miles from the Sun, making it late autumn on the red planet. This distance and a thin atmosphere make it less than perfect sweater weather. A recent weather report from Gale Crater boasted a high of -18 degrees Fahrenheit for the week of May 20, 2025.
      Credit: NASA/JPL-Caltech Seven Years of Summer
      Saturn has a 27-degree tilt, very similar to the 25-degree tilt of Mars and the 23-degree tilt of Earth. But that is where the similarities end. With a 29-year orbit, a single season on the ringed planet lasts seven years. While we can’t experience a Saturnian season, we can observe a ring plane crossing here on Earth instead. The most recent plane crossing took place in March 2025, allowing us to see Saturn’s rings ‘disappear’ from view.
      A Lifetime of Spring
      NASA Hubble Space Telescope observations in August 2002 show that Neptune’s brightness has increased significantly since 1996. The rise is due to an increase in the amount of clouds observed in the planet’s southern hemisphere. These increases may be due to seasonal changes caused by a variation in solar heating. Because Neptune’s rotation axis is inclined 29 degrees to its orbital plane, it is subject to seasonal solar heating during its 164.8-year orbit of the Sun. This seasonal variation is 900 times smaller than experienced by Earth because Neptune is much farther from the Sun. The rate of seasonal change also is much slower because Neptune takes 165 years to orbit the Sun. So, springtime in the southern hemisphere will last for several decades! Remarkably, this is evidence that Neptune is responding to the weak radiation from the Sun. These images were taken in visible and near-infrared light by Hubble’s Wide Field and Planetary Camera 2. Credit: NASA, L. Sromovsky, and P. Fry (University of Wisconsin-Madison) Even further away from the Sun, each season on Neptune lasts over 40 years. Although changes are slower and less dramatic than on Earth, scientists have observed seasonal activity in Neptune’s atmosphere. These images were taken between 1996 and 2002 with the Hubble Space Telescope, with brightness in the southern hemisphere indicating seasonal change.
      As we welcome summer here on Earth, you can build a Suntrack model that helps demonstrate the path the Sun takes through the sky during the seasons. You can find even more fun activities and resources like this model on NASA’s Wavelength and Energy activity. 
      View the full article
  • Check out these Videos

×
×
  • Create New...