Jump to content

NASA Invites Media to Preview its Museum Earth Information Center


Recommended Posts

  • Publishers
Posted
A person stands in a dark room surrounded by images of green leaves and a large depiction of the Earth.
Space for Earth is an immersive experience that is part of the Earth Information Center.
Credit: NASA

Media is invited to preview and interview NASA leadership ahead of the opening of the Earth Information Center at the Smithsonian National Museum of Natural History at 10 a.m. EDT, Monday, Oct. 7.

The 2,000-square-foot exhibit includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, an interpretive panel showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. Visitors also can explore Earth observing missions, changes in Earth’s landscape over time, and how climate is expected to change regionally through multiple interactive experiences.

The event will take place at the Smithsonian National Museum of Natural History 1000 Constitution Ave. NW, Washington from 10 a.m. to 3 p.m. Members of the media interested in attending should email Liz Vlock at: elizabeth.a.vlock@nasa.gov. NASA’s media accreditation policy is available online.

Participants will be available for media interviews starting at the following times:

  • 10 a.m.: NASA Administrator Bill Nelson
  • 10 a.m.: Kirk Johnson, Sant director, Museum of Natural History
  • 10:30 a.m.: Karen St. Germain, division director, NASA Earth Sciences Division
  • 10:30 a.m.: Julie Robinson, deputy director, NASA Earth Sciences Division  

The Earth Information Center draws insights from across all NASA centers and its fellow partners – National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Department of Agriculture, U.S. Agency for International Development, Environmental Protection Agency, and Federal Emergency Management Administration. It allows viewers to see how our home planet is changing and gives decision makers information to develop the tools they need to mitigate, adapt, and respond to climate change.

NASA’s Earth Information Center is a virtual and physical space designed to aid people to make informed decisions on Earth’s environment and climate. It provides easily accessible, readily usable, and scalable Earth information – enabling global understanding of our changing planet. 

The expansion of the physical Earth Information Center at the Smithsonian National Museum of Natural History Museum makes it the second location in the Washington area. The first is located at NASA Headquarters in Washington at 300 E St., SW.

To learn more about the Earth Information Center visit:

https://earth.gov

-end-

Elizabeth Vlock
Headquarters, Washington
202-358-1600
elizabeth.a.vlock@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      NASA / SPACEX CRS-23 ISS RESUPPLY LAUNCH LIVE
    • By NASA
      As an IT security administrator at NASA’s Johnson Space Center in Houston, Mechele Elliott protects the information systems that support astronaut health and mission readiness.

      The encouragement of a family friend set her on this path, leading to a rewarding and somewhat unexpected career in human spaceflight.

      Mechele Elliott stands in front of a space shuttle cockpit mockup in the lobby of the Mission Control Center at NASA’s Johnson Space Center in Houston. Image courtesy of Mechele Elliott “While I was caring for my son during his cancer treatment—living in the hospital with him and supporting his recovery at home—a family friend who worked at NASA took notice,” Elliott said. “She quietly observed my strength, organization, and unwavering dedication to my son. One day she called and said, ‘Get your resume together.’”

      Elliott doubted she was qualified for a position at NASA, though the friend was certain she could learn and handle anything after caring for her son. “Her belief in me gave me the courage to take that first step—and it changed the course of my life.”

      The friend’s endorsement helped her land the position. Elliott was nervous at first, since she did not know much about NASA’s operations and had limited prior experience. With time and training, she grew more certain of the value she brought to the team.

      “Reflecting on the numerous personal challenges I have encountered has reinforced my confidence in my ability to overcome obstacles while maintaining a positive outlook throughout my journey,” she said. “I am proud to have successfully adapted and become a productive member of my team.” In her role today, Elliott safeguards NASA’s information systems. She develops, implements, and maintains security policies, procedures, and systems in the Human Health and Performance Directorate, ensuring compliance with federal and NASA-specific security standards. Her work includes managing access control protocols and responding  to security incidents.

      Mechele Elliott in the Neutral Buoyancy Laboratory at Johnson Space Center. Image courtesy of Mechele Elliott One of her most challenging tasks involved assessing, revitalizing, and implementing four outdated security plans through collaboration with a diverse team. “We successfully aligned the security plans with established standards and garnered commendations from NASA leadership,” she said.

      Outside of work, Elliott enjoys several hobbies that help her relax and maintain balance. She began painting at a young age and continues to find calm through her art. She is an avid gardener, in spite of the Houston summer heat, and feels fulfilled by the beauty of her flowers and sharing homegrown fruits and vegetables with her friends and family. She has also earned a reputation as an excellent baker. “I enjoy making cheesecakes for workplace celebrations and I’ve discovered that many of my coworkers enjoy this hobby of mine, as well!”

      Elliott is profoundly grateful for the opportunity to serve at NASA for over 25 years. Looking ahead to the agency’s future, she offers an important piece of advice to up-and-coming team members. “Remain authentic to yourselves, pursue your aspirations with determination, and uphold a commitment to excellence in all your endeavors.”
      Explore More
      7 min read Life After Microgravity: Astronauts Reflect on Post-Flight Recovery 
      Article 5 days ago 3 min read Jeni Morrison Continues a Family Legacy of Service at NASA 
      Article 7 days ago 3 min read NASA Seeks Industry Input on Next Phase of Commercial Space Stations
      Article 1 week ago View the full article
    • By Amazing Space
      Live Video from the International Space Station (Seen From The NASA ISS Live Stream)
    • By NASA
      Honolulu is pictured here beside a calm sea in 2017. A JPL technology recently detected and confirmed a tsunami up to 45 minutes prior to detection by tide gauges in Hawaii, and it estimated the speed of the wave to be over 580 miles per hour (260 meters per second) near the coast.NASA/JPL-Caltech A massive earthquake and subsequent tsunami off Russia in late July tested an experimental detection system that had deployed a critical component just the day before.
      A recent tsunami triggered by a magnitude 8.8 earthquake off Russia’s Kamchatka Peninsula sent pressure waves to the upper layer of the atmosphere, NASA scientists have reported. While the tsunami did not wreak widespread damage, it was an early test for a detection system being developed at the agency’s Jet Propulsion Laboratory in Southern California.
      Called GUARDIAN (GNSS Upper Atmospheric Real-time Disaster Information and Alert Network), the experimental technology “functioned to its full extent,” said Camille Martire, one of its developers at JPL. The system flagged distortions in the atmosphere and issued notifications to subscribed subject matter experts in as little as 20 minutes after the quake. It confirmed signs of the approaching tsunami about 30 to 40 minutes before waves made landfall in Hawaii and sites across the Pacific on July 29 (local time).
      “Those extra minutes of knowing something is coming could make a real difference when it comes to warning communities in the path,” said JPL scientist Siddharth Krishnamoorthy.
      Near-real-time outputs from GUARDIAN must be interpreted by experts trained to identify the signs of tsunamis. But already it’s one of the fastest monitoring tools of its kind: Within about 10 minutes of receiving data, it can produce a snapshot of a tsunami’s rumble reaching the upper atmosphere.
      The dots in this graph indicate wave disturbances in the ionosphere as measured be-tween ground stations and navigation satellites. The initial spike shows the acoustic wave coming from the epicenter of the July 29 quake that caused the tsunami; the red squiggle shows the gravity wave the tsunami generated.NASA/JPL-Caltech The goal of GUARDIAN is to augment existing early warning systems. A key question after a major undersea earthquake is whether a tsunami was generated. Today, forecasters use seismic data as a proxy to predict if and where a tsunami could occur, and they rely on sea-based instruments to confirm that a tsunami is passing by. Deep-ocean pressure sensors remain the gold standard when it comes to sizing up waves, but they are expensive and sparse in locations.
      “NASA’s GUARDIAN can help fill the gaps,” said Christopher Moore, director of the National Oceanic and Atmospheric Administration Center for Tsunami Research. “It provides one more piece of information, one more valuable data point, that can help us determine, yes, we need to make the call to evacuate.”
      Moore noted that GUARDIAN adds a unique perspective: It’s able to sense sea surface motion from high above Earth, globally and in near-real-time.
      Bill Fry, chair of the United Nations technical working group responsible for tsunami early warning in the Pacific, said GUARDIAN is part of a technological “paradigm shift.” By directly observing ocean dynamics from space, “GUARDIAN is absolutely something that we in the early warning community are looking for to help underpin next generation forecasting.”
      How GUARDIAN works
      GUARDIAN takes advantage of tsunami physics. During a tsunami, many square miles of the ocean surface can rise and fall nearly in unison. This displaces a significant amount of air above it, sending low-frequency sound and gravity waves speeding upwards toward space. The waves interact with the charged particles of the upper atmosphere — the ionosphere — where they slightly distort the radio signals coming down to scientific ground stations of GPS and other positioning and timing satellites. These satellites are known collectively as the Global Navigation Satellite System (GNSS).
      While GNSS processing methods on Earth correct for such distortions, GUARDIAN uses them as clues.
      SWOT Satellite Measures Pacific Tsunami The software scours a trove of data transmitted to more than 350 continuously operating GNSS ground stations around the world. It can potentially identify evidence of a tsunami up to about 745 miles (1,200 kilometers) from a given station. In ideal situations, vulnerable coastal communities near a GNSS station could know when a tsunami was heading their way and authorities would have as much as 1 hour and 20 minutes to evacuate the low-lying areas, thereby saving countless lives and property.
      Key to this effort is the network of GNSS stations around the world supported by NASA’s Space Geodesy Project and Global GNSS Network, as well as JPL’s Global Differential GPS network that transmits the data in real time.
      The Kamchatka event offered a timely case study for GUARDIAN. A day before the quake off Russia’s northeast coast, the team had deployed two new elements that were years in the making: an artificial intelligence to mine signals of interest and an accompanying prototype messaging system.
      Both were put to the test when one of the strongest earthquakes ever recorded spawned a tsunami traveling hundreds of miles per hour across the Pacific Ocean. Having been trained to spot the kinds of atmospheric distortions caused by a tsunami, GUARDIAN flagged the signals for human review and notified subscribed subject matter experts.
      Notably, tsunamis are most often caused by large undersea earthquakes, but not always. Volcanic eruptions, underwater landslides, and certain weather conditions in some geographic locations can all produce dangerous waves. An advantage of GUARDIAN is that it doesn’t require information on what caused a tsunami; rather, it can detect that one was generated and then can alert the authorities to help minimize the loss of life and property. 
      While there’s no silver bullet to stop a tsunami from making landfall, “GUARDIAN has real potential to help by providing open access to this data,” said Adrienne Moseley, co-director of the Joint Australian Tsunami Warning Centre. “Tsunamis don’t respect national boundaries. We need to be able to share data around the whole region to be able to make assessments about the threat for all exposed coastlines.”
      To learn more about GUARDIAN, visit:
      https://guardian.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-117
      Explore More
      5 min read New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea
      Article 21 hours ago 13 min read The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA,…
      Article 2 days ago 21 min read Summary of the 11th ABoVE Science Team Meeting
      Introduction The NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is a large-scale ecological study in the northern…
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: Part of the Gibson Desert in Western Australia is featured in this image, captured by the Φsat-2 mission in June 2025. View the full article
  • Check out these Videos

×
×
  • Create New...