Jump to content

Let It Go: (After Latching)


Recommended Posts

  • Publishers
Posted
Schematic of a possible antenna deployment system consisting of a series of interconnected hexagons.

NASA is seeking innovative solutions for a synchronized antenna deployment system. The primary objective is to develop a mechanism that ensures sequential deployment of antenna panels, addressing a critical aspect of space-based communication technology. In this challenge, participants are tasked with designing a mechanism that will release hexagonal panels in a predetermined sequence. Specifically, the mechanism should trigger the release of the next hexagon in a stack only after the previous one has successfully latched into place. This sequential deployment is crucial for maintaining the antenna’s structural integrity and operational efficiency.
The proposed design must be compatible with one of the winning latch designs from the previous “Let’s Connect” challenge. Additionally, it must integrate seamlessly with the provided backing structure model without compromising the parabolic surface of the antenna. Participants should focus on creating a solution that is both effective and adaptable to existing NASA technologies.

Award: $7,000 in total prizes

Open Date: September 23, 2024

Close Date: November 25, 2024

For more information, visit: https://grabcad.com/challenges/let-it-go-after-latching

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Second Lt. Katherine Hendl escorted the remains of her great-great-uncle, a U.S. Army Air Forces gunner killed in action during World War II, home to Massachusetts nearly 80 years after he was declared missing in action.

      View the full article
    • By NASA
      Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] has decided to retire on April 30, 2025, following 42 years of service to NASA – see Photo 1. Most recently, Kaye served as associate director for research of the Earth Science Division (ESD) within NASA’s Science Mission Directorate (SMD). In this position, he was responsible for the research and data analysis programs for Earth System Science that addressed the broad spectrum of scientific disciplines from the stratopause to the poles to the oceans.
      Photo 1. Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] retired from NASA on April 30, 2025, after a 42-year career. Photo credit: Public Domain A New York native, Kaye’s interest in space was piqued as a child watching early NASA manned space launches on television. He would often write to NASA to get pictures of the astronauts. In high school, he started an after school astronomy club. Despite a youthful interest in Earth science, as he explained in a 2014 “Maniac Talk” at NASA’s Goddard Space Flight Center, Kaye pursued a slightly different academic path. He obtained a Bachelor’s of Science in chemistry from Adelphi University in 1976 and a Ph.D. in theoretical physical chemistry at the California Institute of Technology in 1982. For his graduate studies, he focused on the quantum mechanics of chemical reactions with an aim toward being able to understand and calculate the activity.
      Following graduate school, Kaye secured a post-doctoral position at the U.S. Naval Research Laboratory, where he studied the chemistry of Earth’s atmosphere with a focus on stratospheric ozone. It was while working in a group of meteorologists at NASA’s Goddard Space Flight Center that Kaye returned to his roots and refocused his scientific energy on studying Earth.
      “NASA had a mandate to study stratospheric ozone,” Kaye said in an interview in 2009. “I got involved in looking at satellite observations and especially trying to interpret satellite observations of stratospheric composition and building models to simulate things, to look both ways, to use the models and use the data.”
      Kaye has held numerous science and leadership positions at NASA. He began his career at GSFC as a researcher for the Stratospheric General Circulation and Chemistry Modeling Project (SGCCP) from 1983–1990 working on stratospheric modeling.  In this role, he also worked on an Earth Observing System Interdisciplinary proposal.  His first role at NASA HQ was managing  as program scientist for the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), as well as numerous other missions. In this role, he was a project scientist for the Atmospheric Laboratory for Applications and Science (ATLAS) series of Shuttle missions. While managing ATLAS, Kaye oversaw the science carried out by a dozen instruments from several different countries. He also managed several other Earth Science missions during this time. See the link to Kaye’s “Maniac Talk.”
      Kaye entered the Senior Executive Service in 1999, where he continued to contribute to the agency by managing NASA’s Earth Science Research Program. In addition, Kaye has held temporary acting positions as deputy director of ESD and deputy chief scientist for Earth Science within SMD. Throughout his career he has focused on helping early-career investigators secure their first awards to establish their career path—see Photo 2.
      Photo 2. Throughout his career, Jack Kaye has been an advocate for young scientists, helping them get established in their careers. Here, Kaye speaks with the Climate Change Research Initiative cohort at the Mary W. Jackson NASA Headquarters building in Washington, DC on August 7, 2024. The Earth Science Division’s Early Career Research Program’s Climate Change Research Initiative is a year-long STEM engagement and experiential learning opportunity for educators and students from high school to graduate level. Photo Credit: NASA/Joel Kowsky On numerous occasions, Kaye spoke to different groups emphasizing the agency’s unique role in both developing and utilizing cutting-edge technology, especially remote observations of Earth with different satellite platforms – see Photo 3. With the launch of five new NASA Earth science campaigns in 2020, Kaye stated, “These innovative investigations tackle difficult scientific questions that require detailed, targeted field observations combined with data collected by our fleet of Earth-observing satellites.”
      Photo 3. Jack Kaye hands out eclipse posters and other outreach materials to attendees at Eclipse Fest 2024. Photo credit: GRC https://science.nasa.gov/science-research/earth-science/looking-back-on-looking-up-the-2024-total-solar-eclipse/ Kaye has also represented NASA in interagency and international activities and has been an active participant in the U.S. Global Change Research Program (USGCRP), where he has served for many years as NASA principal of the Subcommittee on Global Change Research. He served as NASA’s representative to the Subcommittee on Ocean Science and Technology and chaired the World Meteorological Organization Expert Team on Satellite Systems. Kaye was named an honorary member of the Asia Oceania Geoscience Society in 2015. He previously completed a six-year term as a member of the Steering Committee for the Global Climate Observing System and currently serves an ex officio member of the National Research Council’s Roundtable on Science and Technology for Sustainability and the Chemical Sciences Roundtable, as well as a member of the Roundtable on Global Science Diplomacy.
      NASA has honored Kaye with numerous awards, including the Distinguished Service Medal in 2022 and the Meritorious Executive in the Senior Executive Service in 2004, 2010, and 2021. In 2024 he was awarded the NASA-USGS Pecora Individual Award honoring excellence in Earth Observation. He was named a Fellow by the American Meteorological Society in 2010 and by the American Association of the Advancement of Science (AAAS) in 2014. Kaye was elected to serve as an office of the Atmospheric and Hydrospheric Science section of the AAAS (2015–2018). AGU has recognized him on two occasions with a Citation for Excellence in Refereeing.
      Over the course of his career Kaye has published more than 50 papers, contributed to numerous reports, books, and encyclopedias, and edited the book Isotope Effects in Gas-Phase Chemistry for the American Chemical Society. In addition, he has attended the Leadership for Democratic Society program at the Federal Executive Institute and the Harvard Senior Managers in Government Program at the John F. Kennedy School of Government at Harvard University.
      “The vantage point of space provides a way to look at the Earth globally, with the ability to observe Earth’s interacting components of air, water, land and ice, and both naturally occurring and human-induced processes,” Kaye said in a November 2024 article published by Penn State University. “It lets us look at variability on a broad range of spatial and temporal scales and given the decades of accomplishments, has allowed us to characterize and document Earth system variability on time scales from minutes to decades.”
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4554–4555: Let’s Try That One Again…
      NASA’s Mars rover Curiosity acquired this image using its Front Hazard Avoidance Camera (Front Hazcam) on May 28, 2025 — Sol 4553, or Martian day 4,553 of the Mars Science Laboratory mission — at 04:48:55 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Wednesday, May 28, 2025
      We came in early this morning and learned that part of Tuesday’s plan didn’t execute on Mars due to a temporary issue with the arm. We collected APXS data on the target “Palo Verde Mountains,” but were not able to take the corresponding MAHLI images or drive away. So it was a straightforward decision for the planning team today to pick up where we left off yesterday, giving ourselves a second chance to collect the MAHLI observation and then complete the same 29.5-meter drive to the west (about 97 feet) that we had planned on Tuesday.
       We love making lemonade from lemons when things don’t go exactly as expected in rover tactical planning, and today was no exception. Since we’re sticking around for a little bit longer, the science team decided to collect additional mosaics of impressive nearby features, including a 15×2 Mastcam mosaic of the “Mishe Mokwa” hill and an 11×2 Mastcam mosaic of fractures near “Lake Cachuma.” We’re also having another go at taking the epically long, long-distance RMI mosaic of a crater 91 kilometers away from Curiosity (almost 57 miles) that we planned yesterday, and we’re playing around with the focus settings to see if we can get a sharper image. 
      The team also had time for a second RMI mosaic of our very well-imaged “Texoli” butte, and a ChemCam LIBS observation on a target named “Santa Monica Bay,” which is just above the “Sisquoc River” target we observed yesterday on the bumpy rock in our workspace. As usual, we will also continue to monitor the environment around us with REMS, RAD, Navcam, and Mastcam observations.
      Share








      Details
      Last Updated May 30, 2025 Related Terms
      Blogs Explore More
      2 min read Sol 4553: Back to the Boxwork!


      Article


      13 hours ago
      3 min read A Dust Devil Photobombs Perseverance!


      Article


      14 hours ago
      4 min read Sols 4549-4552: Keeping Busy Over the Long Weekend


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4547-4548: Taking in the View After a Long Drive
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 21, 2025 — Sol 4546, or Martian day 4,546 of the Mars Science Laboratory mission — at 05:05:33 UTC. NASA/JPL-Caltech Written by Alex Innanen, Atmospheric Scientist at York University
      Earth planning date: Wednesday, May 21, 2025
      Monday’s single-sol plan included a marathon 45-meter drive (about 148 feet), which put us in position for two full sols of imaging. This means both sols have what we call “targeted” science blocks, in which we have images of the workspace down from the last plan and can carefully choose what we want to take a closer look at. This always means a lot of good discussion amongst the geology and mineralogy theme group (GEO) about what deserves this closer look. As an outsider on the environmental theme group (ENV), I don’t always grasp the complexities of these discussions, but it’s always interesting to see what GEO is up to and to learn new things about the geology of Mount Sharp.
      GEO ended up picking “Big Bear Lake” as our contact science target, which is getting its typical treatment from APXS and MAHLI, as well as a LIBS observation from ChemCam. Aside from that there was plenty of room for remote sensing. ChemCam is also taking a LIBS observation of “Volcan Mountains” and a long-distance mosaic of the Texoli butte. Mastcam is also taking mosaics of a nearby trough, as well as two depressions known as “Sulphur Spring,” a more distant boxwork structure, and the very distant Mishe Mokwa butte.
      All of ENV’s activities are remote sensing, and we managed to squeeze in a few of those too. We have a couple dust monitoring observations, looking for dust devils and checking the amount of dust in the atmosphere. And since we’re still in the cloudy season we always try to make room for cloud observations. Today that meant a suraphorizon movie looking for clouds just above the horizon to the south, and a phase function sky survey, which captures clouds all around the rover, to try to understand how these clouds scatter sunlight.
      Share








      Details
      Last Updated May 22, 2025 Related Terms
      Blogs Explore More
      2 min read Sol 4546: Martian Jenga


      Article


      3 hours ago
      5 min read Sols 4543-4545: Leaving the Ridge for the Ridges


      Article


      2 days ago
      3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      6 min read
      Let’s Bake a Cosmic Cake!
      To celebrate what would have been the 100th birthday of Dr. Nancy Grace Roman — NASA’s first chief astronomer and the namesake for the agency’s nearly complete Nancy Grace Roman Space Telescope — we’re baking a birthday cake! This isn’t your ordinary birthday treat — this cosmic cake represents the contents of our universe and everything the Roman telescope will uncover.
      NASA’s Nancy Grace Roman Space Telescope Cosmic Cake NASA The outside of our cosmic cake depicts the sky as we see it from Earth—inky black and dotted with sparkling stars. The inside represents the universe as Roman will see it. This three-layer cake charts the mysterious contents of our universe — mostly dark energy, then dark matter, and finally just five percent normal matter. As you cut into our universe cake, out spills a candy explosion symbolizing the wealth of cosmic objects Roman will see.
      Roman Cosmic Cake Instructions
      Ingredients:
      Two boxes of vanilla cake mix and required ingredients Food coloring in three colors Black frosting Edible glitter Yellow sprinkles  Nonpareil sprinkle mix  Chocolate nonpareil candies  Popping candy  Miniature creme sandwich cookies  Granulated sugar  Sour candies  Dark chocolate chips  Jawbreakers  To make our cosmic cake, we first need to account for the universe’s building blocks — normal matter, dark matter, and dark energy. Comprising about five percent of the universe, normal matter is the stuff we see around us every day, from apples to stars in the sky. Outnumbering normal matter by five times, dark matter is an invisible mass that makes up about 25 percent of the universe. Finally, dark energy — a mysterious something accelerating our universe’s expansion — makes up about 68 percent of the cosmos.
      No one knows what dark matter and dark energy truly are, but we know they exist due to their effects on the universe. Roman will provide clues to these puzzles by 3D mapping matter alongside the expansion of the universe through time. 
      To depict the universe’s building blocks in our cosmic cake, mix the cake batter according to your chosen recipe. Pour one-fourth of the batter into one bowl for the dark matter layer, a little less than three-fourths into another bowl for dark energy, and the remainder into a separate bowl for normal matter. This will give you the quantities of batter for dark energy and dark matter, respectively. Use the remainder to represent normal matter. Color each bowl of batter differently using food coloring, then pour them into three separate cake pans and bake. The different sized layers will have different baking times, so watch them carefully to ensure proper cooking.
      While our cake bakes, we’ll create the cosmic candy mix — the core of our cake that represents the universe’s objects that Roman will uncover.
      First, pour yellow sprinkles into a bowl to symbolize the billions of stars Roman will see, including once-hidden stars on the far side of the Milky Way thanks to its ability to see starlight through gas and dust. 
      Roman’s data will also allow scientists to map gas and dust for the most complete picture yet of the Milky Way’s structure and how it births new stars. Add some granulated sugar to the candy mix as gas and dust.
      Next, add nonpareil sprinkles and chocolate nonpareil candies to symbolize galaxies and galaxy clusters. Roman will capture hundreds of millions of galaxies, precisely measuring their positions, shapes, sizes, and distances. By studying the properties of so many galaxies, scientists will be able to chart dark matter and dark energy’s effects more accurately than ever before.
      Now, add popping candies as explosive star deaths. Roman will witness tens of thousands of a special kind called type Ia supernovae. By studying how fast type Ia supernovae recede from us at different distances, scientists will trace cosmic expansion to better understand whether and how dark energy has changed throughout time.
      Supernovae aren’t the only stellar remnants that Roman will see. To represent neutron stars and black holes, add in jawbreakers and dark chocolate chips. Neutron stars are the remnants of massive stars that collapsed to the size of a city, making them the densest things we can directly observe. 
      The densest things we can’t directly observe are black holes. Most black holes are formed when massive stars collapse even further to a theoretical singular point of infinite density. Sometimes, black holes form when neutron stars merge—an epic event that Roman will witness. 
      Roman is also equipped to spot star-sized black holes in the Milky Way and supermassive black holes in other galaxies. Some supermassive black holes lie at the center of active galaxies—the hearts of which emit excessive energy compared to the rest of the galaxy. For these active cores, also spotted by Roman, add sour candies to the mix.
      Finally, add both whole and crushed miniature creme sandwich cookies to represent distant planets and planets-to-be. Peering into the center of our galaxy, Roman will scan for warped space-time indicating the presence of other worlds. The same set of observations could also reveal more than 100,000 more planets passing in front of other stars. Additionally, the Coronagraph Instrument will directly image both worlds and dusty disks around stars that can eventually form planets.
      After baking, remove the cake layers from the oven to cool. Cut a hole in the center of the thicker dark matter and dark energy layers. Then, stack these two layers using frosting to secure them. Pour the cosmic candy mix into the cake’s core. Then, place the thin normal matter layer on top, securing it with frosting. Frost the whole cake in black and dust it with edible glitter.
      Congratulations — your Roman Cosmic Cake is complete! As you look at the cake’s exterior, think of the night sky. As you slice the cake, imagine Roman’s deeper inspection to unveil billions of cosmic objects and clues about our universe’s mysterious building blocks.
      By Laine Havens
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated May 15, 2025 Related Terms
      Nancy Grace Roman Space Telescope For Kids and Students View the full article
  • Check out these Videos

×
×
  • Create New...