Jump to content

2024 SARP West Atmospheric Aerosols Group


Recommended Posts

  • Publishers
Posted

9 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A group of nine people. the first eight college age and the last one a professor, stand in a line in professional attire. Behind them is a glass building with glass doors, reflecting green trees.
The Atmospheric Aerosols group, from the 2024 Student Airborne Research Program (SARP) West Coast cohort, poses in front of the natural sciences building at UC Irvine, during their final presentations on August 12, 2024.
NASA Ames/Milan Loiacono

Faculty Advisors: Dr. Andreas Beyersdorf, California State University, San Bernardino & Dr. Ann Marie Carlton, University of California

Graduate Mentor: Madison Landi, University of California, Irvine

Madison Landi, Graduate Mentor

Madison Landi, graduate student mentor for the 2024 SARP Aerosols group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

Maya Niyogi

A Comparative Analysis of Tropospheric NO2: Evaluating TEMPO Satellite Data Against Airborne Measurements

Maya Niyogi, Johns Hopkins University

Nitrogen dioxide (NO2) plays a major role in atmospheric chemical reactions; the inorganic compound both contributes to tropospheric ozone production and reacts with volatile organic compounds to create health-hazardous particulate matter. The presence of NO2 in the atmosphere is largely due to anthropogenic activity, making NO2 at the forefront of policy decisions and scientific monitoring. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite launched in 2023 with the goal of monitoring pollution across North America. The publicly-accessible data became available for use in May 2024, however parts of the data remain unvalidated and in beta, creating a need for an in situ validation of its data products. Here we analyze TEMPO’s tropospheric NO2 measurements and compare them to aloft NO2 measurements collected during the NASA Student Airborne Research Project (SARP) 2024 airborne campaign. Six of the campaign flights recording NO2 performed a vertical spiral, providing vertical column data that was adjusted to ambient conditions for comparison against the corresponding TEMPO values. Statistical analyses indicate we have reasonable evidence to conclude that TEMPO satellite data and the flight-collected data record similar values. This research fills a critical knowledge gap through the utilization of aloft NO2 measurements to validate NASA’s newly-launched TEMPO satellite. It is expected that future users of TEMPO data can apply these results to better inform project creation and research.

Benjamin Wells

Investigating the Atmospheric Burden of Black Carbon Over the Past Decade in the Los Angeles Basin

Benjamin Wells, San Diego State University

Black Carbon is a primary aerosol emitted directly into the atmosphere as a result of biomass burning and incomplete combustion of fossil fuels. During the pre-industrial revolution, the main source of black carbon was natural sources whereas currently, the main source is anthropogenic activities. When black carbon is released into the atmosphere, it is a dominant absorber of solar radiation and leads to a significant warming effect on Earth’s climate. In addition to its harmful effects associated with climate change, ambient black carbon inhalation is correlated with adverse health effects such as respiratory and cardiovascular disease, cancer, and premature mortality. In this study, we analyze aloft black carbon measurements in 2016 and 2024 acquired on NASA SARP research flights and compare these concentrations to black carbon measurements taken during the 2010 CalNex field campaign. Both field campaigns flew similar flight paths over the Los Angeles basin allowing us to conduct a critical comparative analysis on vertical and spatial profiles of the atmospheric burden of black carbon over the past 14 years. During the CalNEX study, mass concentrations of black carbon ranged from 0.02 μg/m3 to 0.531 μg/m3, meanwhile 2024 SARP measurements demonstrate concentrations as elevated as 7.83 μg/m3 within the same region. Moreover, similar flight paths conducted during SARP 2024 and 2016 allow for further analysis of aloft black carbon concentrations over a period of time. The results of this study examines and analyzes the changing spatial and temporal characteristics of black carbon throughout the years, leading to an increase of adverse effects on both the climate and public health.

Devin Keith

Tracking Methane and Aerosols in relation to Health Effects in the San Joaquin Valley

Devin Keith, Mount Holyoke College

The San Joaquin Valley (SJV) is located in central California and is one of the most productive agricultural regions in the country for dairy, nuts, and berries, producing more than half of California’s $42 billion output. Due to the SJV’s close proximity to the Sierra Nevada Mountain Range to the East and predominantly Easterly winds, air pollution often accumulates because it is trapped by the geography. Significant chemical constituents of trapped particulate matter are ammonium (NH4), chloride (Cl), sulfate (SO4), nitrate (NO3), black carbon, and organic carbon. The particle size measured in this study is less than 1 micron in diameter, and due to their size, can easily penetrate the respiratory tract leading to adverse health effects such as: asthma, chronic obstructive pulmonary disease, and cardiovascular disease. We employ airborne data collected during the SARP 2024 mission onboard NASA’s P-3 research plane to observe spatial and temporal trends of NH4, Cl, SO4, NO3, and black carbon. Further, we analyze measurements from SARP 2016 flights and compare the atmospheric burden of pollution in the SJV across time. To investigate observations in the context of the public health impacts, we utilize data collected by the California Office of Environmental Health Hazards Assessment and find asthma and cardiovascular disease rates are higher in the SJV hotspots identified here. Per capita health impacts are greater than other California regions such as Los Angeles and San Francisco. The SJV exhibits higher rates of poverty than other communities, which may reveal an environmental justice issue that is difficult to explicitly quantify especially where measurements are sparse.

Lily Lyons

Investigating the Effects of Aerosols on Photosynthesis Using Satellite Imaging

Lily Lyons, Brandeis University

Aerosols in the atmosphere can affect the way sunlight travels to the ground by absorbing or scattering light. Sunlight is a critical component in plant photosynthesis, and the way light scatters affects productivity for vegetation and plant growth. When plants absorb sunlight, the chlorophyll in their leaves releases the excess energy as infrared light, which can be measured from space via satellite. To better understand how aerosol loading in the atmosphere affects plant photosynthesis, this study examines locations in Yosemite, Sequoia, Garrett, and Talladega national forests, and compares aerosol optical depth (AOD), normalized difference vegetation index (NDVI), and solar induced fluorescence (SIF) in these areas. Yosemite and Sequoia act as proxies for the old growth sequoia grove ecosystems, and Talladega and Garrett act as proxies for the Appalachian mixed mesophytic forest ecosystem. Our results show that within 2015-2020 during July, SIF and NDVI levels are significantly greater in mixed mesophytic forests than in sequoia groves. Using linear regression plots, we determined the correlation between SIF, NDVI and AOD to be weak in the given locations. Greater SIF in mixed mesophytic forests could suggest that the presence of a prominent and biodiverse understory is positive for the overall primary productivity of an ecosystem. This study is a good starting point for analyzing diverse ecosystems using SIF, NDVI and satellite data as proxies for photosynthesis, and broadening the scope of biomes examined for their SIF. Furthermore, it highlights the need for further investigation of aerosol impact on the trajectory and amount of sunlight that reaches certain plants.

Ryleigh Czajkowski

Validating the Performance of CMAQ in Simulating the Vertical Distribution of Trace Gases

Ryleigh Czajkowski, South Dakota School of Mines and Technology

Air quality modeling simulates atmospheric processes and air pollutant transport to better understand gas-and particle-phase interactions in the atmosphere. The Environmental Protection Agency’s (EPA) Community Multiscale Air Quality (CMAQ) model couples meteorological, emission, and chemical transport predictions to simulate air pollution from local to hemispheric scales. CMAQ provides scientists and regulatory agencies with important assistance in air quality management, policy enactment, atmospheric research, and creating public health advisories. Recently, a new update to CMAQ (v5.4) was released, utilizing new chemistry mechanisms and incorporating a new atmospheric chemistry model. This study evaluates the performance of the latest model update by analyzing multiple time series of vertical distributions of formaldehyde (CH2O) and methane (CH4) in the Los Angeles Basin and Central Valley regions of California. It compares data from aloft measurements taken during NASA SARP 2017 flights with model predictions to evaluate accuracy. Our study analyzes CMAQ’s capabilities in capturing the vertical dispersion of CH2O and CH4 in different regions, offering insights into the effectiveness of CMAQ for air quality management and the analysis of trace and greenhouse gas dynamics. Using NASA airborne data, this research utilizes a diversified data set to validate the model, providing a more comprehensive evaluation of its capabilities, and thus providing valuable insight into future developments of CMAQ.

Alison Thieberg

Estimating Aerosol Optical Properties Using Mie Theory and Analyzing Their Impact on Radiative Forcing in California

Alison Thieberg, Emory University

Anthropogenic aerosols, unlike greenhouse gasses, provide a net cooling effect to the Earth’s surface. Particles suspended in the atmosphere have the ability to scatter incoming solar radiation, preventing that radiation from heating up the surface. These aerosols like black carbon, ammonium nitrate, ammonium sulfate, and organics are byproducts of both natural and anthropogenic activities. Measuring radiative forcing as a result of these aerosols over time can provide insight on how anthropogenic industries are altering our Earth’s temperature. This study analyzes the changes in radiative forcing from aerosols in central and southern California using data collected from NASA SARP flights from 2016-2024. Aerosol size, composition, and single scattering albedo were used to estimate the aerosol characteristics and to calculate the aerosols’ radiative forcing efficiency. Our results show that aerosols are found to have less of a cooling effect over time when looking at the change in radiative forcing in California from 2016 to 2024. When narrowing in on specific geographic regions, we observe the same trends in the Central Valley with the area becoming warmer as a result of aerosols. However, more southern regions like Los Angeles and the Inland Empire have become cooler from aerosols during this time period. The overall decrease in the cooling effect of California’s aerosols could indicate that the average size of particulates is changing or that the aerosol composition could be shifting to a greater concentration of absorbing aerosols rather than scattering aerosols. This study shows how aerosols influence radiative forcing and their subsequent impacts across regions in California from multiple years.

Click here watch the Terrestrial Ecology Group presentations.

Click here watch the Ocean Group presentations.

Click here watch the Whole Air Sampling (WAS) Group presentations.

Share

Details

Last Updated
Sep 25, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By European Space Agency
      Image: Group photo taken at the General Assembly on Defence, Space and Cybersecurity, held on Friday 12 September 2025, at ESRIN, ESA’s Centre for Earth Observation Programmes in Italy. 
      The event was organised by the European Parliament and the European Commission, in collaboration with the European Space Agency, to promote dialogue between European and national decision-makers and industry leaders. Representatives from major European entities debated the future of the European Union, which is facing unprecedented challenges since the postwar period, in an increasingly complex geopolitical context. Participants examined Europe’s needs in key sectors such as space, cybersecurity, and defence, within the broader context of the Atlantic Alliance. Acting at the European level, as demonstrated by projects like Galileo, EGNOS, and Copernicus, not only brings extraordinary added value in terms of innovation, industrial competitiveness, economies of scale, and spending efficiency, but also strengthens Europe’s strategic autonomy, the security of its citizens, and the protection of its critical infrastructure.
      The group included experts from major European entities, including: Andrius Kubilius, European Commissioner for Defence and Space; Adolfo Urso, Italian Minister of Enterprises and Made in Italy; Matteo Piantedosi, Italian Minister of the Interior; Gen. B. Luigi Vinciguerra, Brigade General of the Guardia di Finanza – Head of the III Operations Department, General Command; Josef Aschbacher, Director General of the European Space Agency; Simonetta Cheli, Director of Earth Observation Programmes and Head of ESRIN; Carlo Corazza, Head of the European Parliament Office in Italy; Ammiraglio Giuseppe Cavo Dragone, Chairman of the NATO Military Committee; Teodoro Valente, President of the Italian Space Agency (ASI); Hans de Vries, Chief Cybersecurity and Operations Officer (COO) - ENISA; Fabio di Stefano, Communications at the European Parliament in Italy.
      Watch here a replay of ESA Director General's intervention and find the transcript of his speech.
      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Webb Narrows Atmospheric Possibilities for Earth-sized Exoplanet TRAPPIST-1 d
      This artist’s concept depicts planet TRAPPIST-1 d passing in front of its turbulent star, with other members of the closely packed system shown in the background. Full illustration and caption show below. Credits:
      NASA, ESA, CSA, Joseph Olmsted (STScI) The exoplanet TRAPPIST-1 d intrigues astronomers looking for possibly habitable worlds beyond our solar system because it is similar in size to Earth, rocky, and resides in an area around its star where liquid water on its surface is theoretically possible. But according to a new study using data from NASA’s James Webb Space Telescope, it does not have an Earth-like atmosphere.
      “Ultimately, we want to know if something like the environment we enjoy on Earth can exist elsewhere, and under what conditions. While NASA’s James Webb Space Telescope is giving us the ability to explore this question in Earth-sized planets for the first time, at this point we can rule out TRAPPIST-1 d from a list of potential Earth twins or cousins,” said Caroline Piaulet-Ghorayeb of the University of Chicago and Trottier Institute for Research on Exoplanets (IREx) at Université de Montréal, lead author of the study published in The Astrophysical Journal.
      Planet TRAPPIST-1 d
      The TRAPPIST-1 system is located 40 light-years away and was revealed as the record-holder for most Earth-sized rocky planets around a single star in 2017, thanks to data from NASA’s retired Spitzer Space Telescope and other observatories. Due to that star being a dim, relatively cold red dwarf, the “habitable zone” or “Goldilocks zone” – where the planet’s temperature may be just right, such that liquid surface water is possible – lies much closer to the star than in our solar system. TRAPPIST-1 d, the third planet from the red dwarf star, lies on the cusp of that temperate zone, yet its distance to its star is only 2 percent of Earth’s distance from the Sun. TRAPPIST-1 d completes an entire orbit around its star, its year, in only four Earth days.
      Webb’s NIRSpec (Near-Infrared Spectrograph) instrument did not detect molecules from TRAPPIST-1 d that are common in Earth’s atmosphere, like water, methane, or carbon dioxide. However, Piaulet-Ghorayeb outlined several possibilities for the exoplanet that remain open for follow-up study.
      “There are a few potential reasons why we don’t detect an atmosphere around TRAPPIST-1 d. It could have an extremely thin atmosphere that is difficult to detect, somewhat like Mars. Alternatively, it could have very thick, high-altitude clouds that are blocking our detection of specific atmospheric signatures — something more like Venus. Or, it could be a barren rock, with no atmosphere at all,” Piaulet-Ghorayeb said.
      Image: TRAPPIST-1 d (Artist’s Concept)
      This artist’s concept depicts planet TRAPPIST-1 d passing in front of its turbulent star, with other members of the closely packed system shown in the background. The TRAPPIST-1 system is intriguing to scientists for a few reasons. Not only does the system have seven Earth-sized rocky worlds, but its star is a red dwarf, the most common type of star in the Milky Way galaxy. If an Earth-sized world can maintain an atmosphere here, and thus have the potential for liquid surface water, the chance of finding similar worlds throughout the galaxy is much higher. In studying the TRAPPIST-1 planets, scientists are determining the best methods for separating starlight from potential atmospheric signatures in data from NASA’s James Webb Space Telescope. The star TRAPPIST-1’s variability, with frequent flares, provides a challenging testing ground for these methods. NASA, ESA, CSA, Joseph Olmsted (STScI) The Star TRAPPIST-1
      No matter what the case may be for TRAPPIST-1 d, it’s tough being a planet in orbit around a red dwarf star. TRAPPIST-1, the host star of the system, is known to be volatile, often releasing flares of high-energy radiation with the potential to strip off the atmospheres of its small planets, especially those orbiting most closely. Nevertheless, scientists are motivated to seek signs of atmospheres on the TRAPPIST-1 planets because red dwarf stars are the most common stars in our galaxy. If planets can hold on to an atmosphere here, under waves of harsh stellar radiation, they could, as the saying goes, make it anywhere.
      “Webb’s sensitive infrared instruments are allowing us to delve into the atmospheres of these smaller, colder planets for the first time,” said Björn Benneke of IREx at Université de Montréal, a co-author of the study. “We’re really just getting started using Webb to look for atmospheres on Earth-sized planets, and to define the line between planets that can hold onto an atmosphere, and those that cannot.”
      The Outer TRAPPIST-1 Planets
      Webb observations of the outer TRAPPIST-1 planets are ongoing, which hold both potential and peril. On the one hand, Benneke said, planets e, f, g, and h may have better chances of having atmospheres because they are further away from the energetic eruptions of their host star. However, their distance and colder environment will make atmospheric signatures more difficult to detect, even with Webb’s infrared instruments.
      “All hope is not lost for atmospheres around the TRAPPIST-1 planets,” Piaulet-Ghorayeb said. “While we didn’t find a big, bold atmospheric signature at planet d, there is still potential for the outer planets to be holding onto a lot of water and other atmospheric components.”
      “As NASA leads the way in searching for life outside our solar system, one of the most important avenues we can pursue is understanding which planets retain their atmospheres, and why,” said Shawn Domagal-Goldman, acting director of the Astrophysics Division at NASA Headquarters in Washington. “NASA’s James Webb Space Telescope has pushed our capabilities for studying exoplanet atmospheres further than ever before, beyond extreme worlds to some rocky planets – allowing us to begin confirming theories about the kind of planets that may be potentially habitable. This important groundwork will position our next missions, like NASA’s Habitable Worlds Observatory, to answer a universal question: Are we alone?”
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more about the TRAPPIST-1 system
      Read more about changing views on the “habitable zone”
      Webb Blog: Reconnaissance of Potentially Habitable Worlds with NASA’s Webb
      Video: How to Study Exoplanets
      Video: How do we learn about a planet’s Atmosphere?
      Learn more about exoplanets
      Read more about studying TRAPPIST-1 c with Webb
      Read more about studying TRAPPIST-1 b with Webb
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Stars



      Universe


      Share








      Details
      Last Updated Aug 13, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Goddard Space Flight Center Red Dwarfs Science & Research Stars Studying Exoplanets The Universe View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA instruments and aircraft are helping identify potential sources of critical minerals across vast swaths of California, Nevada, and other Western states. Pilots gear up to reach altitudes about twice as high as those of a cruising passenger jet.NASA NASA and the U.S. Geological Survey have been mapping the planets since Apollo. One team is searching closer to home for minerals critical to national security and the economy.
      If not for the Joshua trees, the tan hills of Cuprite, Nevada, would resemble Mars. Scalded and chemically altered by water from deep underground, the rocks here are earthly analogs for understanding ancient Martian geology. The hills are also rich with minerals. They’ve lured prospectors for more than 100 years and made Cuprite an ideal place to test NASA technology designed to map the minerals, craters, crusts, and ices of our solar system.
      Sensors that discovered lunar water, charted Saturn’s moons, even investigated ground zero in New York City were all tested and calibrated at Cuprite, said Robert Green, a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California. He’s honed instruments in Nevada for decades.
      One of Green’s latest projects is to find and map rocky surfaces in the American West that could contain minerals crucial to the nation’s economy and security. Currently, the U.S. is dependent on imports of 50 critical minerals, which include lithium and rare earth elements used in everything from rechargeable batteries to medicine.
      Scientists from the U.S. Geological Survey (USGS) are searching nationwide for domestic sources. NASA is contributing to this effort with high-altitude aircraft and sensors capable of detecting the molecular fingerprints of minerals across vast, treeless expanses in wavelengths of light not visible to human eyes.
      The hills of Cuprite, Nevada, appear pink and tan to the eye (top image) but they shine with mica, gypsum, and alunite among other types of minerals when imaged spectroscopically (lower image). NASA sensors used to study Earth and other rocky worlds have been tested there.USGS/Ray Kokaly The collaboration is called GEMx, the Geological Earth Mapping Experiment, and it’s likely the largest airborne spectroscopic survey in U.S. history. Since 2023, scientists working on GEMx have charted more than 190,000 square miles (500,000 square kilometers) of North American soil.
      Mapping Partnership Started During Apollo
      As NASA instruments fly in aircraft 60,000 feet (18,000 meters) overhead, Todd Hoefen, a geophysicist, and his colleagues from USGS work below. The samples of rock they test and collect in the field are crucial to ensuring that the airborne observations match reality on the ground and are not skewed by the intervening atmosphere.
      The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.
      For example, geologic maps of the Moon made in the early 1960s at the USGS Astrogeology Science Center in Flagstaff, Arizona, helped Apollo mission planners select safe and scientifically promising sites for the six crewed landings that occurred from 1969 to 1972. Before stepping onto the lunar surface, NASA’s Moon-bound astronauts traveled to Flagstaff to practice fieldwork with USGS geologists. A version of those Apollo boot camps continues today with astronauts and scientists involved in NASA’s Artemis mission.
      Geophysicist Raymond Kokaly, who leads the GEMx campaign for USGS, is pictured here conducting ground-based hyperspectral imaging of rock in Cuprite, Nevada, in April 2019.USGS/Todd Hoefen The GEMx mission marks the latest in a long history of partnerships between NASA and USGS. The two agencies have worked together to map rocky worlds — and keep astronauts and rovers safe — since the early days of the space race.
      Rainbows and Rocks
      To detect minerals and other compounds on the surfaces of rocky bodies across the solar system, including Earth, scientists use a technology pioneered by JPL in the 1980s called imaging spectroscopy. One of the original imaging spectrometers built by Robert Green and his team is central to the GEMx campaign in the Western U.S.
      About the size and weight of a minifridge and built to fly on planes, the instrument is called AVIRIS-Classic, short for Airborne Visible/Infrared Imaging Spectrometer. Like all imaging spectrometers, it takes advantage of the fact that every molecule reflects and absorbs light in a unique pattern, like a fingerprint. Spectrometers detect these molecular fingerprints in the light bouncing off or emitted from a sample or a surface.  
      In the case of GEMx, that’s sunlight shimmering off different kinds of rocks.  
      Compared to a standard digital camera, which “sees” three color channels (red, green, and blue), imaging spectrometers can see more than 200 channels, including infrared wavelengths of light that are invisible to the human eye.
      NASA spectrometers have orbited or flown by every major rocky body in our solar system. They’ve helped scientists investigate methane lakes on Titan, Saturn’s largest moon, and study Pluto’s thin atmosphere. One JPL-built spectrometer is currently en route to Europa, an icy moon of Jupiter, to help search for chemical ingredients necessary to support life.
      “One of the cool things about NASA is that we develop technology to look out at the solar system and beyond, but we also turn around and look back down,” said Ben Phillips, a longtime NASA program manager who led GEMx until he retired in 2025.
      The Newest Instrument
      More than 200 hours of GEMx flights are scheduled through fall 2025. Scientists will process and validate the data, with the first USGS mineral maps to follow. During these flights, an ER-2 research aircraft from NASA’s Armstrong Flight Research Center in Edwards, California, will cruise over the Western U.S. at altitudes twice as high as a passenger jet flies.
      At such high altitudes, pilot Dean Neeley must wear a spacesuit similar to those used by astronauts. He flies solo in the cramped cockpit but will be accompanied by state-of-the-art NASA instruments. In the belly of the plane rides AVIRIS-Classic, which will be retiring soon after more than three decades in service. Carefully packed in the plane’s nose is its successor: AVIRIS-5, taking flight for the first time in 2025.
      Together, the two instruments provide 10 times the performance of the older spectrometer alone, but even by itself AVIRIS-5 marks a leap forward. It can sample areas ranging from about 30 feet (10 meters) to less than a foot (30 centimeters).
      “The newest generation of AVIRIS will more than live up to the original,” Green said.
      More About GEMx
      The GEMx research project will last four years and is funded by the USGS Earth Mapping Resources Initiative. The initiative will capitalize on both the technology developed by NASA for spectroscopic imaging, as well as the agency’s expertise in analyzing the datasets and extracting critical mineral information from them.
      Data collected by GEMx is available here.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      Karen Fox / Elizabeth Vlock
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov
      Written by Sally Younger
      2025-086
      Share
      Details
      Last Updated Jul 10, 2025 Related Terms
      Earth Science Earth Jet Propulsion Laboratory NASA Aircraft Explore More
      3 min read NASA Aircraft, Sensor Technology, Aid in Texas Flood Recovery Efforts
      Article 22 hours ago 2 min read Polar Tourists Give Positive Reviews to NASA Citizen Science in Antarctica
      Citizen science projects result in an overwhelmingly positive impact on the polar tourism experience. That’s…
      Article 1 day ago 4 min read NASA Mission Monitoring Air Quality from Space Extended 
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      After a decade of searching, NASA’s MAVEN (Mars Atmosphere Volatile Evolution) mission has, for the first time, reported a direct observation of an elusive atmospheric escape process called sputtering that could help answer longstanding questions about the history of water loss on Mars.
      Scientists have known for a long time, through an abundance of evidence, that water was present on Mars’ surface billions of years ago, but are still asking the crucial question, “Where did the water go and why?”
      Early on in Mars’ history, the atmosphere of the Red Planet lost its magnetic field, and its atmosphere became directly exposed to the solar wind and solar storms. As the atmosphere began to erode, liquid water was no longer stable on the surface, so much of it escaped to space. But how did this once thick atmosphere get stripped away? Sputtering could explain it.
      Sputtering is an atmospheric escape process in which atoms are knocked out of the atmosphere by energetic charge particles.
      “It’s like doing a cannonball in a pool,” said Shannon Curry, principal investigator of MAVEN at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder and lead author of the study. “The cannonball, in this case, is the heavy ions crashing into the atmosphere really fast and splashing neutral atoms and molecules out.”
      While scientists had previously found traces of evidence that this process was happening, they had never observed the process directly. The previous evidence came from looking at lighter and heavier isotopes of argon in the upper atmosphere of Mars. Lighter isotopes sit higher in the atmosphere than their heavier counterparts, and it was found that there were far fewer lighter isotopes than heavy argon isotopes in the Martian atmosphere. These lighter isotopes can only be removed by sputtering.
      “It is like we found the ashes from a campfire,” said Curry. “But we wanted to see the actual fire, in this case sputtering, directly.”
      To observe sputtering, the team needed simultaneous measurements in the right place at the right time from three instruments aboard the MAVEN spacecraft: the Solar Wind Ion Analyzer, the Magnetometer, and the Neutral Gas and Ion Mass Spectrometer. Additionally, the team needed measurements across the dayside and the nightside of the planet at low altitudes, which takes years to observe.
      The combination of data from these instruments allowed scientists to make a new kind of map of sputtered argon in relation to the solar wind. This map revealed the presence of argon at high altitudes in the exact locations that the energetic particles crashed into the atmosphere and splashed out argon, showing sputtering in real time. The researchers also found that this process is happening at a rate four times higher than previously predicted and that this rate increases during solar storms.
      The direct observation of sputtering confirms that the process was a primary source of atmospheric loss in Mars’ early history when the Sun’s activity was much stronger.
      “These results establish sputtering’s role in the loss of Mars’ atmosphere and in determining the history of water on Mars,” said Curry.
      The finding, published this week in Science Advances, is critical to scientists’ understanding of the conditions that allowed liquid water to exist on the Martian surface, and the implications that it has for habitability billions of years ago.
      The MAVEN mission is part of NASA’s Mars Exploration Program portfolio. MAVEN’s principal investigator is based at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder, which is also responsible for managing science operations and public outreach and communications. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN mission. Lockheed Martin Space built the spacecraft and is responsible for mission operations. NASA’s Jet Propulsion Laboratory in Southern California provides navigation and Deep Space Network support.

      More information on NASA’s MAVEN mission

      By Willow Reed
      Laboratory for Atmospheric and Space Physics, University of Colorado Boulder
      Media Contacts: 
      Nancy N. Jones
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share








      Details
      Last Updated May 28, 2025 Related Terms
      MAVEN (Mars Atmosphere and Volatile EvolutioN) Mars Planets View the full article
  • Check out these Videos

×
×
  • Create New...