Jump to content

The Marshall Star for September 25, 2024


Recommended Posts

  • Publishers
Posted
29 Min Read

The Marshall Star for September 25, 2024

NASA Marshall Space Flight Center Director Joseph Pelfrey, bottom right, welcomes attendees to the 38th meeting of the Marshall Small Business Alliance on Sept. 19.

Marshall Presents Small Business Awards for Fiscal Year 2024

By Wayne Smith

NASA’s Marshall Space Flight Center honored top contractors, subcontractors, teams, and individuals of fiscal year 2024 at the 38th meeting of Marshall’s Small Business Alliance. The awards honor aerospace companies and leaders who have demonstrated support of the center’s small business programs and NASA’s mission of exploration.

NASA Marshall Space Flight Center Director Joseph Pelfrey, bottom right, welcomes attendees to the 38th meeting of the Marshall Small Business Alliance on Sept. 19.
NASA Marshall Space Flight Center Director Joseph Pelfrey, bottom left, welcomes attendees to the 38th meeting of the Marshall Small Business Alliance on Sept. 19.
NASA/Charles Beason

The event took place Sept. 19 at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville. Around 650 participants from industry and government gathered to network, learn about business opportunities, and recognize outstanding achievements in support of NASA’s mission and the small business community. Those attending represented 32 states and 10 nations.

“The Marshall Small Business Alliance is an outreach tool designed to introduce the business community to the NASA marketplace,” said David Brock, small business specialist for the agency’s Office of Small Business Programs at Marshall. “Those in attendance can gain valuable insight into Marshall’s exciting programs and projects, upcoming procurement opportunities, and get an opportunity to network with Marshall prime contractors.”

Marshall Director Joseph Pelfrey welcomed attendees, while Jeramie Broadway, deputy director of Marshall’s Office of Strategic Analysis and Communications, provided an update on the center for fiscal year 2025 and beyond.

Marshall’s Industry & Advocate Awards are presented annually and reflect leadership in business community and sustained achievement in service to NASA’s mission.

“We are excited about this year’s winners,” Brock said. “Each play a key role in helping NASA achieve successes in support of key programs and projects, including the Human Landing System and Space Launch System rocket. Maintaining and sustaining an experienced and competitive industry base is what makes America strong, and small businesses are at the core of those successes.”

Jeramie Broadway, deputy director of Marshall’s Office of Strategic Analysis and Communications, provides an update on the center during the Small Business Alliance meeting.
Jeramie Broadway, deputy director of Marshall’s Office of Strategic Analysis and Communications, provides an update on the center during the Small Business Alliance meeting.
NASA/Charles Beason

Marshall manages the Human Landing System and Space Launch System programs.

This year’s award recipients are:

Small Business Prime Contractor of the Year

Media Fusion

Small Business Subcontractor of the Year

Zin Technologies

Large Business Prime Contractor of the Year

Jacobs

Mentor-Protégé Agreement of the Year

Jacobs (mentor) and CodePlus (protégé)

Procurement Person of the Year

Joseph Tynes  

Program Person of the Year

Patrick McVay

Small Business Technical Coordinator of the Year

Leah Fox

Technical Person of the Year

David Hood

Attendees network during Marshall’s Small Business Alliance event at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville.
Attendees network during Marshall’s Small Business Alliance event at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville.
NASA/Charles Beason

NASA civil service employees nominate eligible individuals and organizations for awards. A panel of NASA procurement and technical officials evaluates each nominee’s business practices, innovative processes, adoption of new technologies and their overall contributions to NASA’s mission and the agency’s Small Business Program.

Award recipients in the following categories become candidates for agency-level Small Business Industry and Advocate Awards:

  • Large and Small Business Prime Contractors of the Year
  • Small Business Subcontractor of the Year
  • Procurement Team or Person
  • Technical, Small Business Technical Coordinator/Technical Advisor
  • Program Person or Team of the Year


Learn more about Marshall’s small business initiatives.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

New Flag Honors Marshall Work on NASA’s Space X Crew-9 Mission

By Serena Whitfield

A new flag is reaching for the Moon outside the Huntsville Operations Support Center at NASA’s Marshall Space Flight Center following a Sept.19 ceremony, marking contributions from center team members toward the launch of NASA’s SpaceX Crew-9 mission.

The Crew-9 mission to the International Space Station will carry NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov. The mission is scheduled to launch Sept. 28 no earlier than 12:17 p.m. CDT.

Dave Gwaltney, second from left, technical assistant, specialty system and Commercial Crew Program representative at NASA’s Marshall Space Flight Center, gives introductions during the Crew-9 flag-raising ceremony Sept. 19 outside the Huntsville Operations Support Center. He is joined by, from left, Brady Doepke, Thomas “Reid” Lawrence, and Nicole Pelfrey, manager of the Payload and Mission Operations Division.
Dave Gwaltney, second from left, technical assistant, specialty system and Commercial Crew Program representative at NASA’s Marshall Space Flight Center, gives introductions during the Crew-9 flag-raising ceremony Sept. 19 outside the Huntsville Operations Support Center. He is joined by, from left, Brady Doepke, Thomas “Reid” Lawrence, and Nicole Pelfrey, manager of the Payload and Mission Operations Division.
NASA/Krisdon Manecke

Crew-9 will be the first human spaceflight mission to launch from Space Launch Complex-40 at Cape Canaveral Space Force Station. This is the ninth crew rotation mission with SpaceX to the orbiting laboratory under NASA’s Commercial Crew Program (CCP). The crew will spend approximately five months at the station, conducting more than 200 science and research demonstrations before returning in February 2025.

Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.

Thomas "Reid" Lawrence raises the Crew-9 mission flag as Doepke looks on during the flag-raising ceremony to honor NASA’s Space X Crew-9 Mission to the International Space Station.
Thomas “Reid” Lawrence raises the Crew-9 mission flag as Doepke looks on during the flag-raising ceremony to honor NASA’s Space X Crew-9 Mission to the International Space Station.
NASA/Serena Whitfield

The flag raising has been a tradition for missions supported at Marshall’s Huntsville Operations Support Center (HOSC), as well as a tradition within the CCP to celebrate the successful conclusion of NASA’s Agency Flight Readiness Review prior to launch. The HOSC provides engineering and mission operations support for the space station, the CCP, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

The CCP support team at Marshall provides crucial programmatic, engineering, and safety and mission assurance expertise for launch vehicles, spacecraft propulsion, and integrated vehicle performance. Marshall’s role within the CCP is to support certification that the spacecraft and launch vehicle are ready for launch. The support team performs engineering expertise, particularly for propulsion, as well as program management, safety and mission assurance, and spacecraft support. 

The Crew-9 mission flag is raised during the ceremony outside the Huntsville Operations Support Center.
The Crew-9 mission flag is raised during the ceremony outside the Huntsville Operations Support Center.
NASA/Serena Whitfield

The flag-raising ceremony was a joint effort between the Payload and Mission Operations Division (PMOD) and CCP team. Dave Gwaltney, technical assistant, specialty systems, and Commercial Crew Program representative, gave the introductions. He recognized Brady Doepke, structural analyst for liquid propulsion systems, for his significant contributions in preparation for Crew-9 mission success. Gwaltney said Doepke exemplified leadership and innovation through his guidance of Marshall’s CCP engineering team, which resulted in a successful risk assessment of the updated SpaceX turbine wheel fleet leader acceptance criteria.

Payload and Mission Operations Division Manager Nicole Pelfrey also recognized Thomas “Reid” Lawrence as the division’s Crew-9 honoree.

“Reid serves dutifully in the HOSC as part of the HOSC’s Data Operations Control Room Operations Engineers,” Pelfrey said. “Reid has a number of technical specialties, including his expertise in the Backup Control Center activation procedures. This expertise has been vital over the past year as JSC has worked through power upgrades. He also diligently ensures our ISS payload users receive their data and is a key engineer for the testing, verification, and operation of our HOSC interfaces that support commercial crew communications.”

Whitfield is an intern supporting the Marshall Office of Communications.

› Back to Top

Center Hosts Rossi Prize Recognition Dinner, IXPE Science Workshop

NASA’s Marshall Space Flight Center hosted the Rossi Prize Recognition Dinner at the U.S. Space & Rocket Center in Huntsville on Sept. 18. The dinner was held to recognize the IXPE (Imaging X-ray Polarimetry Explorer) team members honored with the Bruno Rossi Prize, a top prize in high-energy astronomy. From left, Martin Weisskopf, Rossi Prize awardee and NASA emeritus scientist, who served as the principal investigator for IXPE during its development, launch, and commissioning; Paolo Soffitta, Rossi Prize awardee, and the Italian Space Agency’s principal investigator for IXPE; Hashima Hasan, program scientist for IXPE at NASA Headquarters; Andrea Marinucci, IXPE team member and researcher with the Italian Space Agency; and Marshall Director Joseph Pelfrey, who provided welcome remarks at the dinner. "The Bruno Rossi Prize highlights how partnerships and teamwork can push the boundaries of scientific knowledge," Pelfrey said. "The (IXPE) mission, a groundbreaking collaboration between NASA and the Italian Space Agency, represents over 30 years of dedicated effort and stands as a testament to the innovative work of a truly multinational team."

NASA’s Marshall Space Flight Center hosted the Rossi Prize Recognition Dinner at the U.S. Space & Rocket Center in Huntsville on Sept. 18. The dinner was held to recognize the IXPE (Imaging X-ray Polarimetry Explorer) team members honored with the Bruno Rossi Prize, a top prize in high-energy astronomy. From left, Martin Weisskopf, Rossi Prize awardee and NASA emeritus scientist, who served as the principal investigator for IXPE during its development, launch, and commissioning; Paolo Soffitta, Rossi Prize awardee, and the Italian Space Agency’s principal investigator for IXPE; Hashima Hasan, program scientist for IXPE at NASA Headquarters; Andrea Marinucci, IXPE team member and researcher with the Italian Space Agency; and Marshall Director Joseph Pelfrey, who provided welcome remarks at the dinner. “The Bruno Rossi Prize highlights how partnerships and teamwork can push the boundaries of scientific knowledge,” Pelfrey said. “The (IXPE) mission, a groundbreaking collaboration between NASA and the Italian Space Agency, represents over 30 years of dedicated effort and stands as a testament to the innovative work of a truly multinational team.” (NASA/Jennifer Deermer)

Rossi Prize winners Weisskopf and Soffitta, center seated, are joined by a plush goat, the unofficial mascot of the IXPE mission, and other IXPE team members at the Rossi Prize Recognition Dinner.

Rossi Prize winners Weisskopf and Soffitta, center seated, are joined by a plush goat, the unofficial mascot of the IXPE mission, and other IXPE team members at the Rossi Prize Recognition Dinner. Read more about the award and the prize winners. (NASA/Jennifer Deermer)

› Back to Top

Take 5 with Shannon Segovia

By Wayne Smith

Talk with Shannon Segovia for any length of time and you’ll quickly discover the care and enthusiasm she has for her position as director of the Office of Communications at NASA’s Marshall Space Flight Center. And that care and enthusiasm extends to those she works with across the center to share news about Marshall missions and team members.

In her role, Segovia oversees a team responsible for media relations and public affairs, digital and social media, stakeholder relations and engagement, internal and employee communications, and executive communications for the center.

img-2195-rotated.jpg?w=1536
Shannon Segovia, director of the Office of Communications at NASA’s Marshall Space Flight Center, in front of Artemis I before its launch.
Photo courtesy of Shannon Segovia 

“We manage these activities for the entire center of about 7,000 people, so it is a definitely a very busy job!” said Segovia, a native of Athens, Alabama, who was named as permanent communications director this summer after more than 12 years at Marshall.

She was the deputy director of communications starting in June 2023 after working as Marshall’s news chief and public affairs team lead starting in 2019. From 2012 to 2019, Segovia was a public affairs officer at the center. Prior to joining NASA, she was the communications manager for the Tennessee Valley Authority’s Sequoyah Nuclear Plant near Chattanooga, Tennessee.

 At Marshall, she said it’s the people who continue to be her biggest motivators.

“As a public servant, I want the people I serve – the people who follow our channels, listen to the news stories we create, and attend our events – to know why NASA’s missions are important and critical to the world we live in,” Segovia said. “I am so fortunate to have such a brilliant team, and they motivate me daily with their hard work.”

“I’m also motivated by my husband and family because I want to make them proud. I want my nieces and nephews to have a bright future, and I truly believe the work we are doing at NASA will help them do that.”

Question: What excites you most about the future of human space exploration, or your NASA work, and your team’s role it?

Segovia: NASA’s missions depend on public and stakeholder support, and that is what our office does – ensures people know what we are doing at NASA and specifically at Marshall, why it is important, and how our missions are benefiting humanity. From social media posts to events like the South Star music festival to interviews with media outlets and stakeholder tours, we use every channel we can to tell others about the work we are doing at Marshall and NASA. Our office touches every organization at the center, and it is so exciting to have a front seat to everything we are doing to get humans back to the Moon and on to Mars.

Shannon Segovia, right center, with some of the engineers from Marshall she accompanied during a visit to The Today Show in New York in 2019 for a segment about International Women’s Day. From left, Kathy Byars, Katherine Van Hooser, Lakiesha Hawkins, Segovia, Michelle Tillotson Rudd, and Lisa Watson-Morgan.
Shannon Segovia, right center, with some of the engineers from Marshall she accompanied during a visit to The Today Show in New York in 2019 for a segment about International Women’s Day. From left, Kathy Byars, Katherine Van Hooser, Lakiesha Hawkins, Segovia, Michelle Tillotson Rudd, and Lisa Watson-Morgan.
Photo courtesy of Shannon Segovia

Question: What has been the proudest moment of your career and why?

Segovia: I helped take a team of 12 Marshall female engineers to The Today Show in 2019 for a segment about International Women’s Day. As a public affairs specialist, one of our job duties is to prepare subject matter experts for interviews, making sure they have messages, talking points, and anything else they need. I have never been more proud to be a woman and to work for Marshall than I was that day, seeing how well these women represented NASA and the extraordinary achievements they have made possible. It also made me even more thankful for the job I have – preparing them to make sure they felt confident and could talk about their work was a wonderful experience. The other moment in my career I will never forget is the Artemis I launch in November 2022. I’ve supported the Space Launch System since I started working at NASA, and seeing that rocket fly was one of the best moments of my career. It was the culmination of so much hard work and sacrifice from so many people and was truly an overwhelming and amazing experience.

Question: Who or what inspired you to pursue an education/career that led you to NASA and Marshall?

Segovia: My parents have always been my No. 1 fans, encouragers, and supporters. They instilled in me a strong work ethic and the belief I could do anything I wanted to do if I worked hard. They made education a priority for my brothers and I and would do anything to help us succeed. I am so fortunate to have such a wonderful family. My mom always wanted me to do something in the medical field, but a biology course in college changed my mind quickly on that. I wasn’t sure what I wanted to do but had been at school for two years and needed to declare a major. I liked to write and read but didn’t know how to make a career out of that until I went to a journalism class taught by Ms. Bobbie Hurt at the University of North Alabama, and I was hooked. She became my mentor and really taught me how to be a good writer, which has been the foundation for my entire career. I ended up with a double major in journalism and public relations, and it was one of the best decisions I ever made.

Question: What advice do you have for employees early in their NASA career or those in new leadership roles?

Segovia: Find people to whom you can go to for advice, who have your back, and can help you accomplish your goals. I’ve had some amazing mentors, teammates, and bosses who have not only supported me but pushed me to do things I wasn’t sure I could do and helped me even when I messed up. I would not be here without them, and I think it is so important to have those people in your entire career, but especially when you are new. Ask for help when you need it. Time flies, so enjoy the season and job you are in. You will know when it is time to move on, but being present and learning from where you are will help you succeed.

Question: What do you enjoy doing with your time while away from work?

Segovia: I love the water – ocean, river, pool, lake – I like being outside and water activities. I love to read and travel, and also to spend time with family and friends. I have three nieces and two nephews, and I like to go to their games and activities. I have a 4-year-old terrier mix named Ted and I enjoy taking him on walks and to the park.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Awards $1.5 Million at Watts on the Moon Challenge Finale

NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.

At the Great Lakes Science Center in Cleveland, Ohio, Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara pose with their $1 million check and the power transmission and energy storage hardware that won them the grand prize in the four-year competition. The team is comprised of six faculty researchers at UC Santa Barbara, led by team lead Dr. Philip Lubin (far right).
Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system.
NASA/GRC/Sara Lowthian-Hanna

This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Sept. 20 at Great Lakes Science Center in Cleveland, Ohio, home of the visitor center for NASA’s Glenn Research Center.

“Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for Centennial Challenges at NASA’s Marshall Space Flight Center. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”

NASA astronaut Stephen Bowen, who flew on three space shuttle missions and served as commander of the SpaceX Crew-6 mission in 2023, engages with one of the Phase 2 finalist teams about their innovative hardware at NASA’s Watts on the Moon Challenge Technology Showcase and Winners’ Event at the Great Lakes Science Center in Cleveland, Ohio, on Sept. 20. Prototypes like the one shown here aim to provide power transmission and energy storage capabilities to the lunar south pole.
NASA astronaut Stephen Bowen, who flew on three space shuttle missions and served as commander of the SpaceX Crew-6 mission in 2023, engages with one of the Phase 2 finalist teams about their innovative hardware at NASA’s Watts on the Moon Challenge Technology Showcase and Winners’ Event at the Great Lakes Science Center in Cleveland, Ohio, on Sept. 20. Prototypes like the one shown here aim to provide power transmission and energy storage capabilities to the lunar south pole.
NASA/Sara Hanna-Lowthian

The winning teams are:

  • First prize ($1 million): H.E.L.P.S. (High Efficiency Long-Range Power Solution) of Santa Barbara, California
  • Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado

Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.

During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.

Mary Wadel, center right, NASA Glenn Research Center’s Director of Research, Technology, and Partnerships, Bowen, and Great Lakes Science Center President and CEO Kirsten Ellenbogen, right, listen intently while Orbital Mining Corporation team lead Ken Liang explains his team’s approach to the mission scenario behind the Watts on the Moon Challenge. His team’s power transmission and energy storage technology took home the second-place prize in the four-year, $5 million challenge, winning a cash prize of $500,000.
Mary Wadel, center right, NASA Glenn Research Center’s Director of Research, Technology, and Partnerships, Bowen, and Great Lakes Science Center President and CEO Kirsten Ellenbogen, right, listen intently while Orbital Mining Corporation team lead Ken Liang explains his team’s approach to the mission scenario behind the Watts on the Moon Challenge. His team’s power transmission and energy storage technology took home the second-place prize in the four-year, $5 million challenge, winning a cash prize of $500,000.
NASA/Sara Hanna-Lowthian

Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.

Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour test with high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.

“The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”

Watch the finale of NASA’s Watts on the Moon challenge, a $5 million, two-phase competition designed to develop breakthrough power transmission and energy storage technologies.

During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.

The Watts on the Moon Challenge is a NASA Centennial Challenge led by Glenn. Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.

› Back to Top

Michoud Continues Work on Evolved Stage of SLS Rocket for Future Artemis Missions

Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility.

The novel tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area. The EUS will serve as the upper, or in-space, stage for all Block 1B and Block 2 SLS flights in both crew and cargo configurations.

Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility in New Orleans, Louisiana. The tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area, picture here.
Manufacturing equipment that will be used to build components for NASA’s SLS (Space Launch System) rocket for future Artemis missions is being installed at the agency’s Michoud Assembly Facility. The tooling will be used to produce the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area, pictured here.
NASA/Evan Deroche

In tandem, NASA and Boeing, the SLS lead contractor for the core stage and exploration upper stage, are producing structural test articles and flight hardware structures for the upper stage at Michoud and the agency’s Marshall Space Flight Center. Early manufacturing is already underway at Michoud while preparations for an engine-firing test series for the upper stage are in progress at nearby Stennis Space Center.

“The newly modified manufacturing space for the exploration upper stage signifies the start of production for the next evolution of SLS Moon rockets at Michoud,” said Hansel Gill, director at Michoud. “With Orion spacecraft manufacturing and SLS core stage assembly in flow at Michoud for the past several years, standing up a new production line and enhanced capability at Michoud for EUS is a significant achievement and a reason for anticipation and enthusiasm for Michoud and the SLS Program.”

NASA Michoud Assembly facility technicians Cameron Shiro (foreground), Michael Roberts, and Tien Nguyen (background) install the strain gauge on the forward adapter barrel structural test article for the exploration upper stage of the SLS rocket.
Michoud facility technicians Cameron Shiro, foreground, Michael Roberts, and Tien Nguyen, background, install the strain gauge on the forward adapter barrel structural test article for the exploration upper stage of the SLS rocket.
NASA/Eric Bordelon

The advanced upper stage for SLS is planned to make its first flight with Artemis IV and replaces the single-engine Interim Cryogenic Propulsion Stage (ICPS) that serves as the in-space stage on the initial SLS Block 1 configuration of the rocket. With its larger liquid hydrogen and liquid oxygen propellant tanks feeding four L3 Harris Technologies- built RL10C-3 engines, the EUS generates nearly four times the thrust of the ICPS, providing unrivaled lift capability to the SLS Block 1B and Block 2 rockets and making a new generation of crewed lunar missions possible.

This upgraded and more powerful rocket will increase the SLS rocket’s payload to the Moon by 40%, from 27 metric tons (59,525 lbs.) with Block 1 to 38 metric tons (83,776 lbs.) in the crew configuration. Launching crewed missions along with other large payloads enables multiple large-scale objectives to be accomplished in a single mission.

NASA Michoud Assembly facility quality inspectors Michael Conley (background) and Michael Kottemann perform Ultrasonic Test (UT) inspections on the mid-body V-Strut for a structural test article for the SLS rocket’s advanced exploration upper stage, or EUS, in the factory’s new manufacturing area.
Michoud facility quality inspectors Michael Conley, background, and Michael Kottemann perform Ultrasonic Test inspections on the mid-body V-Strut for a structural test article for the SLS rocket’s advanced exploration upper stage in the factory’s new manufacturing area.
NASA/Evan Deroche

Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

NASA’s Marshall Space Flight Center manages the SLS Program and Michoud.

› Back to Top

I am Artemis: Chris Pereira

Chris Pereira can personally attest to the immense gravitational attraction of black holes. He’s been in love with space ever since he saw a video on the topic in a high school science class.

But it wasn’t just any science class. It was one specially designed for English learners.

As RS-25’s operations integrator, Chris Pereira is responsible for ensuring that the many pieces of the program – from tracking on-time procurement of supplies and labor loads to coordinating priorities on various in-demand machine centers – come together to deliver a quality product.
As RS-25’s operations integrator, Chris Pereira is responsible for ensuring that the many pieces of the program – from tracking on-time procurement of supplies and labor loads to coordinating priorities on various in-demand machine centers – come together to deliver a quality product.
Mike Labbe, L3Harris Technologies

“I was born and raised in Guatemala,” Pereira said. “I came here at 14 unable to speak any English.”

Pereira did not know how to navigate the U.S. educational system either, but after that class, he was certain he wanted a career in space.

Thus began a journey that ultimately landed him at L3Harris Technologies, where he works in the Aerojet Rocketdyne segment as an engineer and operations integrator on the RS-25 engine – used to power the core stage of NASA’s SLS (Space Launch System) rocket that will launch astronauts to the Moon under NASA’s Artemis campaign.

Pereira’s first step was to stay after class and ask to borrow a copy of the video on black holes. His teacher not only obliged but took him across the street to the local library to get his first library card.

Pereira quickly recognized that the pathway to his desired career in space was through higher education. It was equally clear, however, that he was not yet on that pathway. English as a Second Language classes, including that science class, did not count toward college admissions. His guidance counselor, meanwhile, was nudging him toward the trades.

But with the help of teachers and a new guidance counselor, he got himself on the college-bound track.

“I came to understand there were multiple career pathways to explore my interest in space,” Pereira said. “One was engineering.”

There was a lot of catching up to do, so Pereira took eight classes per day, including honors courses. He also worked every day after school cleaning a gymnasium from 6 to 11 p.m. to help his family make ends meet.

Pereira earned his mechanical engineering degree at California State University at Los Angeles while also working as a senior educator at the California Science Center to cover the cost of his college tuition and living expenses.

Pereira’s first career experience was as an intern in manufacturing engineering at Aerojet Rocketdyne. “I learned that making 100% mission-success engines requires a strong culture of attention to detail, teamwork and solid work ethics.” Pereira said. His first full-fledged engineering job was with Honeywell Aerospace working on aircraft programs.

Eventually, space came calling – literally. “My mentor at Aerojet Rocketdyne called me up and said, ‘Chris, I have a job for you,’” Pereira said.

He began his new job working on rocket engine programs including the AR1 and RS-68 but shifted to the RS-25 after NASA awarded Aerojet Rocketdyne a contract for newly manufactured versions of the engine. Initial versions of the SLS are using refurbished engines from the Space Shuttle Program. Evolved versions of the RS-25 recently concluded a critical test series and will debut with the fifth Artemis flight.

As RS-25’s operations integrator, Pereira is responsible for ensuring that the many pieces of the program – from tracking on-time procurement of supplies and labor loads to coordinating priorities on various in-demand machine centers – come together to deliver a quality product.

Playing a key role in the nation’s effort to return astronauts to the Moon feels a bit like coming home again, Pereira said. “You develop your first love, work really hard, take different pathways and encounter new passions,” he said. “It’s almost funny how the world and life work out – it’s like I’ve taken a big circle back to my first love.”

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

NASA’s Marshall Space Flight Center manages the SLS Program.

Read other I Am Artemis features.

› Back to Top

‘Legacy of the Invisible’ Event Celebrates Mural, Marshall’s Astrophysics Missions

mural-6edited.jpg?w=2048

Renee Weber, chief scientist at NASA’s Marshall Space Flight Center, talks during the “Legacy of the Invisible” event in downtown Huntsville on Sept. 20. About 300 people attended the event, which coincided with the 25th anniversary of the launch of the Chandra X-ray Observatory. The celebration featured “No Straight Lines,” a new mural at the corner of Clinton Avenue and Washington Street by local artist Float. The mural honors Huntsville’s rich scientific legacy in astrophysics and highlights the groundbreaking discoveries made possible by Marshall scientists and engineers. Other speakers included Collen Wilson-Hodge, principal investigator of the Fermi Gamma-ray Space Telescope. The event also offered members of the community the opportunity to meet the scientists who worked on some of NASA’s most revolutionary astrophysics missions. Featured exhibits from Marshall included the Apollo Telescope mount, the main science instrument on Skylab; the High Energy Astrophysics Program (HEAO); the BATSE instrument on the Compton Gamma-ray Observatory; Chandra X-ray Observatory; Fermi; IXPE (Imaging X-ray Polarimetry Explorer); and Marshall’s X-Ray and Cryogenic Facility. “I had a really nice time at the event,” Weber said. “It’s always great to see such interest and enthusiasm in our science work from the public.” Wilson-Hodge said the mural is an artistic depiction of the historic event detected with the Fermi Gamma-ray Burst Monitor and the Laser Interferometer Gravitational-wave Observatory on Aug. 17, 2017. “On that day, for the first time ever, we observed both a gamma-ray burst and gravitational waves from two very dense neutron stars merging to form a black hole,” she said. (NASA/Serena Whitfield)

From left to right, scientists and astrophysicists from Marshall, Cori Fletcher, Michelle Hui, Steven Ehlert, Weber, Colleen Wilson-Hodge, Lisa Gibby, and the artist Float pose for a photo in front of the “No Straight Lines” mural at the corner of Clinton Avenue and Washington Street in Huntsville.

From left to right, scientists and astrophysicists from Marshall, Cori Fletcher, Michelle Hui, Steven Ehlert, Weber, Colleen Wilson-Hodge, Lisa Gibby, and the artist Float pose for a photo in front of the “No Straight Lines” mural at the corner of Clinton Avenue and Washington Street in Huntsville. (NASA/Serena Whitfield)

› Back to Top

Chandra Finds Galaxy Cluster that Crosses the Streams

Astronomers using NASA’s Chandra X-ray Observatory have found a galaxy cluster has two streams of superheated gas crossing one another. This result shows that crossing the streams may lead to the creation of new structure.

Researchers have discovered a second pair of tails trailing behind a galaxy in this cluster. Previously, astronomers discovered a shorter pair of tails from a different galaxy close to this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays that have been shown in the optical data. These tails span for over a million light-years and help determine the evolution of the galaxy cluster.
Researchers have discovered an enormous, comet-like tail of hot gas – spanning over 1.6 million light-years long – trailing behind a galaxy within the galaxy cluster called Zwicky 8338, or Z8338.
X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk

Researchers have discovered an enormous, comet-like tail of hot gas – spanning over 1.6 million light-years long – trailing behind a galaxy within the galaxy cluster called Zwicky 8338 (Z8338 for short). This tail, spawned as the galaxy had some of its gas stripped off by the hot gas it is hurtling through, has split into two streams.

This is the second pair of tails trailing behind a galaxy in this system. Previously, astronomers discovered a shorter pair of tails from a different galaxy near this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays.

Astronomers now have evidence that these streams trailing behind the speeding galaxies have crossed one another. Z8338 is a chaotic landscape of galaxies, superheated gas, and shock waves (akin to sonic booms created by supersonic jets) in one relatively small region of space. These galaxies are in motion because they were part of two galaxy clusters that collided with each other to create Z8338.

This new composite image shows this spectacle. X-rays from Chandra (represented in purple) outline the multimillion-degree gas that outweighs all of the galaxies in the cluster. The Chandra data also shows where this gas has been jettisoned behind the moving galaxies. Meanwhile an optical image from the Dark Energy Survey from the Cerro Tololo Inter-American Observatory in Chile shows the individual galaxies peppered throughout the same field of view.

The original gas tail discovered in Z8338 is about 800,000 light-years long and is seen as vertical in this image. The researchers think the gas in this tail is being stripped away from a large galaxy as it travels through the galaxy cluster. The head of the tail is a cloud of relatively cool gas about 100,000 light-years away from the galaxy it was stripped from. This tail is also separated into two parts.

Researchers have discovered a second pair of tails trailing behind a galaxy in this cluster. Previously, astronomers discovered a shorter pair of tails from a different galaxy close to this latest one. This newer and longer set of tails was only seen because of a deeper observation with Chandra that revealed the fainter X-rays that have been shown in the optical data. These tails span for over a million light-years and help determine the evolution of the galaxy cluster.
A labeled version of the galaxy cluster Zwicky 8338.
X-ray: NASA/CXC/Xiamen Univ./C. Ge; Optical: DESI collaboration; Image Processing: NASA/CXC/SAO/N. Wolk

The team proposes that the detachment of the tail from the large galaxy may have been caused by the passage of the other, longer tail. Under this scenario, the tail detached from the galaxy because of the crossing of the streams.

The results give useful information about the detachment and destruction of clouds of cooler gas like those seen in the head of the detached tail. This work shows that the cloud can survive for at least 30 million years after it is detached. During that time, a new generation of stars and planets may form within it.

The Z8338 galaxy cluster and its jumble of galactic streams are located about 670 million light-years from Earth. A paper describing these results appeared in the Aug. 8, 2023, issue of the Monthly Notices of the Royal Astronomical Society and is available here.

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

› Back to Top

New Video Series Spotlights Engineers on NASA’s Europa Clipper Mission

What does it take to build a massive spacecraft that will seek to determine if a mysterious moon has the right ingredients for life? Find out in a new video series called “Behind the Spacecraft,” which offers behind-the-scenes glimpses into the roles of five engineers working on NASA’s Europa Clipper mission, from building the spacecraft’s communications systems to putting it through rigorous tests so the orbiter can meet its science goals in space.

With its launch period opening Oct. 10, Europa Clipper is the agency’s first mission dedicated to exploring an ocean world beyond Earth. The spacecraft will travel 1.8 billion miles to the Jupiter system, where it will investigate the gas giant’s moon Europa, which scientists believe contains a global saltwater ocean beneath its icy shell.

The videos are being released here weekly. The first two are already out.

Meet the team:

  • Dipak Srinivasan, lead communications systems engineer at the Johns Hopkins Applied Physics Laboratory, makes sure the Europa Clipper team can communicate with the spacecraft. Learn more about his work in the video above.
  • Sarah Elizabeth McCandless, navigation engineer at NASA’s Jet Propulsion Laboratory, helped plan Europa Clipper’s trajectory, ensuring the spacecraft arrives at Jupiter safely and has a path to fly by Europa dozens of times. Learn more about Sarah’s work here.
  • Jenny Kampmeier, a science systems engineer at JPL, acts as an interface between mission scientists and engineers.
  • Andres Rivera, a systems engineer at JPL and first-generation American, works on Europa Clipper’s cruise phase — the journey from Earth to Jupiter.
  • Valeria Salazar, an integration and test engineer at JPL who spent her childhood in Mexico, helped test the Europa Clipper spacecraft to ensure its launch readiness.

Europa Clipper experts will answer questions about the mission in a NASA Science Live show airing in English on Oct. 1, and in Spanish on Oct. 3. The broadcasts will appear on NASA+, YouTubeFacebook, and X. The Spanish broadcast will be streamed on the NASA en Español YouTube channel. Viewers can submit questions on social media using the hashtag #askNASA or by leaving a comment in the chat section of the Facebook or YouTube stream.

Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission and will fly through the most punishing radiation environment of any planet in the solar system. The spacecraft will orbit Jupiter and, during multiple flybys of Europa, will collect a wealth of scientific data with nine science instruments and an experiment that uses its telecommunications system to gather gravity data.

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft.

› Back to Top

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Week in images: 08-12 September 2025
      Discover our week through the lens
      View the full article
    • By NASA
      Ames Science Directorate’s Stars of the Month: September 2025

      The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Taejin Park, Lydia Schweitzer, and Rachel Morgan. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
      Earth Science Star: Taejin Park
      Taejin Park is a NASA Earth eXchange (NEX) research scientist within the Biospheric Science Branch, for the Bay Area Environmental Research Institute (BAERI). As the Project Scientist for the Wildfire, Ecosystem Resilience, & Risk Assessment (WERK) project, he has exhibited exemplary leadership and teamwork leading to this multi-year study with the California Natural Resources Agency (CNRA) and California Air Resources Board (CARB) to develop tracking tools of statewide ecological condition, disturbance, and recovery efforts related to wildfires.
      Space Science and Astrobiology Star: Lydia Schweitzer
      Lydia Schweitzer is a research scientist within the Planetary Systems Branch for the Bay Area Environmental Research Institute (BAERI) as a member of the Neutron Spectrometer System (NSS) team with broad contributions in instrumentation, robotic rovers and lunar exploration. Lydia is recognized for her leadership on a collaborative project to design and build a complex interface unit that is crucial for NSS to communicate with the Japanese Space Agency’s Lunar Polar eXploration rover mission (LUPEX). In addition, she is recognized for her role as an instrument scientist for the Volatiles Investigating Polar Exploration Rover (VIPER) and MoonRanger missions.
      Space Science and Astrobiology Star: Rachel Morgan
      Rachel Morgan is an optical scientist in the Astrophysics Branch for the SETI Institute. As AstroPIC’s lead experimentalist and the driving force behind the recently commissioned photonic testbed at NASA Ames, this month she achieved a record 92 dB on-chip suppression on a single photonic-integrated chip (PIC) output channel. This advances critical coronagraph technology and is a significant milestone relevant to the Habitable Worlds Observatory.
      View the full article
    • By NASA
      Explore This Section Earth Earth Observer Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam Announcements More Archives Conference Schedules Style Guide 13 min read
      The Earth Observer Editor’s Corner: July–September 2025
      NOTE TO READERS: After more than three decades associated with or directly employed by NASA, Steve Platnick [GSFC—Deputy Director for Atmospheres, Earth Sciences Division] stepped down effective August 8, 2025. Steve began his civil servant career at GSFC in 2002, but his GSFC association went back to 1993, first as a contractor and then as one of the earliest employees of the Joint Center for Earth Systems Technology (JCET). During his time at NASA, Steve played an integral role in the sustainability and advancement of NASA’s Earth Observing System platforms and data. He was actively involved in the Moderate Resolution Imaging Spectroradiometer (MODIS) Science Team, where he helped advance several key components of the MODIS instrument. He was also the NASA Lead/co-Lead for the Suomi National Polar-orbiting Partnership (Suomi NPP), Atmosphere Discipline from 2012–2020 where he focused on operational cloud optical and microphysical products.
      In 2008, Steve became the Earth Observing System (EOS) Senior Project Scientist. In this role, he led the EOS Project Science Office that supported airborne sensors, ground networks, and calibration labs. The Kudos article titled “Steve Platnick Steps Down from NASA After 34 Years of Service” includes a more detailed account of Steve’s career and includes a list of awards he has received.
      Steve’s departure leaves a vacancy in the author’s chair for “The Editor’s Corner” – another role Steve filled as EOS Senior Project Scientist. Barry Lefer [NASA Headquarters—Associate Director of Research, Earth Science Division] graciously agreed to serve as guest author of the editorial in the current compilation. I want to thank Steve for all his support for The Earth Observer over the years and thank Barry for stepping in as the author of “The Editor’s Corner” for the time being.
      –Alan Ward, Executive Editor, The Earth Observer
      I begin this editorial with news of a successful Earth science launch. At 5:40 PM Indian Standard Time (IST), or 8:10 AM Eastern Daylight Time (EDT), on July 30, 2025, the joint NASA–Indian Space Research Organization (ISRO) Synthetic Aperture Radar, or NISAR, mission launched from the Satish Dhawan Space Centre on India’s southeastern coast aboard an ISRO Geosynchronous Satellite Launch Vehicle (GSLV) rocket 5. The ISRO ground controllers began communicating with NISAR about 20 minutes after launch, at just after 8:29 AM EDT, and confirmed it is operating as expected.
      NISAR will use two different radar frequencies (L-band SAR and S-band SAR) to penetrate clouds and forest canopies. Including L-band and S-band radars on one satellite is an evolution in SAR airborne and space-based missions that, for NASA, started in 1978 with the launch of Seasat. In 2012, ISRO began launching SAR missions starting with Radar Imaging Satellite (RISAT-1), followed by RISAT-1A in 2022, to support a wide range of applications in India.
      Combining the data from these two radars will allow researchers to systematically and globally map Earth – measuring changes of our planet’s surface down to a centimeter (~0.4 inches). With this detailed view, researchers will have an unprecedented ability to observe and measure complex processes from ecosystem disturbances to natural hazards to groundwater issues. All NISAR science data will be freely available and open to the public.
      Following the successful launch, NISAR entered an approximately 90-day commissioning phase to test out systems before science operations begin. A key milestone of that phase was the completion of the deployment of the 39-ft (12-m) radar antenna reflector on August 15 – see Video. The process began on August 9, when the satellite’s boom, which had been tucked close to its main body, started unfolding one joint at a time until it was fully extended about four days later. The reflector assembly is mounted at the end of the boom. On August 15, small explosive bolts that held the reflector assembly in place were fired, enabling the antenna to begin a process called the bloom – its unfurling by the release of tension stored in its flexible frame while stowed like an umbrella. Subsequent activation of motors and cables pulled the antenna into its final, locked position.
      Video: NISAR mission team members at NASA JPL, working with colleagues in India, executed the deployment of the satellite’s radar antenna reflector on Aug. 15, 2025. About 39 feet (12 meters) in diameter, the reflector directs microwave pulses from NISAR’s two radars toward Earth and receives the return signals. Credit: NASA/JPL-Caltech The radar reflector will be used to direct and receive microwave signals from the two radars. By interpreting the differences between the L-band and S-band measurements, researchers will be able to discern characteristics about the surface below. As NISAR passes over the same locations twice every 12 days, scientists can evaluate how those characteristics have changed over time to reveal new insights about Earth’s dynamic surfaces.
      With the radar reflector now in full bloom, scientists have turned their attention to tuning and testing the radar and preparing NISAR for Science Operations, which are anticipated to start around the beginning of November. Congratulations to the NISAR team on a successful launch and deployment of the radar reflector. Along with the science community, I am excited to see what new discoveries will result from the data collected by the first Earth System Observatory mission.
      Turning now to news from active missions, the Soil Moisture Active Passive (SMAP) mission has collected over 10 years of global L-band radiometry observations that have resulted in surface soil moisture, vegetation optical depth (VOD), and freeze/thaw state estimates that outperform past and current products. A decade of SMAP soil moisture observations has led to scientific achievements, including quantifying the linkages of the three main metabolic cycles (e.g., carbon, water, and energy) on land. The data have been widely used by the Earth system science community to improve drought assessments and flood prediction as well as the accuracy of numerical weather prediction models.
      SMAP’s Early Adopter program has helped connect SMAP data with people and organizations that need it. The program has increased the awareness of SMAP mission products, broadened the user community, increased collaboration with potential users, improved knowledge of SMAP data product capabilities, and expedited the distribution and uses of mission products for a suite of 16 products available. For example, the L-band VOD, which is related to water content in vegetation, is being used to better understand water exchanges in the soil–vegetation–atmosphere continuum.
      The SMAP Active–Passive (AP) algorithm – based on data from SMAP and the European Copernicus Program Sentinel-1 C-band synthetic aperture radar (SAR) – will be adapted to work with L-band data from the newly launched NISAR mission. The result will be estimates of global soil moisture at a spatial resolution of 1 km (0.62 mi) or better approximately once per week.
      In addition, the data collected during the SMAP mission would be continued and further enhanced by the European Union’s Copernicus Imaging Microwave Radiometer (CIMR) mission if it launches. This proposed multichannel microwave radiometry observatory includes L-band and four other microwave channels sharing a large mesh reflector – like the one used with SMAP. The plan calls for CIMR to follow a similar approach as SMAP for RFI detection and meet the instrument thermal noise and data latency of SMAP for next-mission desired characteristics.
      To learn more about what SMAP has accomplished see “A Decade of Global Water Cycle Monitoring: NASA Soil Moisture Active Passive Mission.”
      NASA’s Orbiting Carbon Observatory-2 (OCO-2) has been the “gold standard” for atmospheric carbon dioxide (CO2) observations from space for over a decade. The data returned from OCO-2 provide insights into plant health, forest management, forecasting crop yields, fire-risk models, and anticipating droughts. 
      OCO-3, constructed from spare parts left after OCO-2, was launched to the International Space Station (ISS) in 2019, where it has operated for over five years. OCO-3 extends the global CO2 measurement record while adding new capabilities made possible by being on ISS (e.g., detailed views of urban and tropical regions). 
      The overarching OCO mission hasn’t just about been about data and hardware. Although both those elements are parts of the story, the human stories woven through the mission’s successes and setbacks are really what holds the mission together. The feature, “A Tapestry of Tales: 10th Anniversary Reflections from NASA’s OCO-2 Mission,” sheds light on some of these personal stories from the OCO-2 and OCO-3 missions.
      The individual tales contained in this article reveal the grit and determination behind the scenes of the success of OCO-2 and OCO-3, from the anxiety and excitement surrounding the launch of OCO-2, to moments of fieldwork in the Nevada desert, to internships where wildfire responders turned to OCO-2 data to improve fire-risk models. Taken together, these stories form a “tapestry” that reveals how the OCO-2 and OCO-3 missions continue to illuminate the dynamics of Earth’s atmosphere – one breath at a time.
      These personal perspectives underscore that science is not just numbers; it’s people pushing boundaries, navigating failure, and inspiring ways to make our planet safer and healthier. In a time such as this, this is an important reminder.
      The joint NASA–U.S. Geological Survey (USGS) Landsat program has been a cornerstone of Earth observation for over 50 years. On July 13, Landsat 9 collected its millionth image: a stunning shot of the Arctic National Wildlife Refuge in Alaska – see Figure. Landsat 9, the most recent satellite in the Landsat series, orbits Earth alongside Landsat 8. Together, these satellites collect invaluable data about Earth’s changing land surface every eight days.
      Figure: This Landsat 9 image showing the Beaufort Sea shoreline off Alaska and Canada is just one of the scenes captured and processed on July 13, 2025— the same day the USGS EROS archive reached a milestone of one million Landsat 9 Level-1 products. This false color image was made with bands 6, 5, and 4 from the Operational Land Imager. This remote area allows the pristine wilderness environment to support a diverse wildlife and unique ecosystem that includes various species of mammals, birds, and fish. Landsat Level-1 products from Landsat 1 through Landsat 9 can be downloaded at no charge from a number of systems – visit the Landsat Data Access webpage to learn more.  Credit: Public Domain After collecting more than 3.3 million images over the course of more than 26 years in orbit, Landsat 7 was decommissioned on June 4, 2025. A YouTube video released at the time of decommissioning provides a concise visual summary of the Landsat 7 mission’s achievements – and the technical challenges overcome. In addition, The Earth Observer did a feature for the 20th anniversary of Landsat 7 in the July–August 2019 issue, called “The Living Legacy of Landsat 7: Still Going Strong After 20 Years in Orbit” [Volume 31, Issue 4, pp. 4–14] that is a useful resource to learn more about the history and achievements (through 20 years) of the mission.
      One of the strengths of the Landsat program is its potential for data integration with other satellites. The Harmonized Landsat and Sentinel-2 (HLS) product exemplifies this collaborative approach by combining data from Landsat 8 and 9 with data from the European Space Agency’s Copernicus Sentinel-2 A, B, and C missions. Whereas Landsat alone has a repeat time of eight days (i.e., combining Landsat 8 and 9 data); the combined HLS dataset provides imagery for the same location on Earth every 1.6 days – enabling researchers to monitor short-term changes in Earth’s land surface much more effectively than using Landsat or Sentinel-2 data alone.
      HLS became one of the most-downloaded NASA data products in fiscal year 2024, with continued growth on the horizon. In February 2025, the program expanded with nine new vegetation indices based on HLS data, with historical processing back to 2013 scheduled for completion by early 2026. Low-latency HLS products will also be available in late 2026. For the full story of how HLS came to be – see the feature: “Harmonized Landsat and Sentinel-2: Collaboration Drives Innovation.”
      Following a 13-month hibernation, the Global Ecosystem Dynamics Investigation (GEDI) mission was reinstalled to its original location aboard the ISS and resumed operations on April 22, 2024. Since this storage period, GEDI’s lasers have been operating nominally and the mission has continued to produce high-quality observations of the Earth’s three-dimensional structure, amassing 33 billion land surface returns as of November 27, 2024.
      The mission team has been actively processing and releasing post-storage data to the public, with Version 2.1 – GEDI L1B, L2A, L2B, and L4A data products, which include data through November 2024, all available for download. The new L4C footprint-level Waveform Structural Complexity Index (WSCI) product using pre-storage data has also been released. Looking ahead, the team is preparing Version 3.0 (V3) of all data products, which will incorporate post-storage data while improving quality filtering, geolocation accuracy, and algorithm performance.
      The 2025 GEDI Science Team Meeting (STM) brought together the mission science team, competed science team, representatives from the distributed active archive centers (DAACs), collaborators, stakeholders, and data users. Notably, it marked the first in-person gathering of the second competed science team, who shared updates on their research projects. The STM held an important space for brainstorming, knowledge-sharing, and discussion as the GEDI mission continues to flourish in its second epoch. To learn more, see “Summary of the 2025 GEDI Science Team Meeting.”
      Shifting focus to the boreal forests of North America, the NASA Arctic–Boreal Vulnerability Experiment (ABoVE) is now in its final year, marking the end of a decade-long scientific endeavor that has transformed our understanding of environmental change in Alaska and western Canada. This ambitious campaign, funded primarily by NASA’s Terrestrial Ecology Program, has successfully progressed through three distinct phases: ecosystem dynamics (2015–2018), ecosystem services (2017–2022), and the current analysis and synthesis phase (2023–present).
      As ABoVE approaches its conclusion, the program has grown to encompass 67 NASA-funded projects with over 1000 participating researchers – a testament to the collaborative scale required to address complex Arctic–boreal ecosystem questions. The program’s integrated approach, combining field research, airborne campaigns, and satellite remote sensing, has generated unprecedented insights into how environmental changes in these northern regions affect both vulnerable ecosystems and society.
      The recent 11th – and final – ABoVE Science Team Meeting was an opportunity to showcase the program’s evolution from data collection to synthesis, highlighting successful community engagement initiatives, cutting-edge research on carbon dynamics and ecosystem responses, and innovative science communication strategies that have made this complex research accessible to diverse audiences. With synthesis activities now underway, ABoVE is positioned to deliver comprehensive insights that will inform Arctic and boreal research for years to come. To learn more, see “Summary of the 11th and Final ABoVE Science Team Meeting.”
      Last but certainly not least, I want to both recognize and congratulate Compton J. Tucker [GSFC—Senior Researcher]. Compton retired from NASA in March 2025 after 48 years of public service, and then in April, was among 149 newly elected members to the National Academy of Sciences (NAS) – which is one of the highest honors in American science. This recognition from NAS brings Compton’s career full circle. He came to GSFC as a NAS postdoc before joining NASA as a civil servant. Compton is a pioneer in the field of satellite-based environmental analysis, using data from various Landsat missions and from the National Oceanographic and Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer (AVHRR) instrument. His research has focused on global photosynthesis on land, determining land cover, monitoring droughts and food security, and evaluating ecologically coupled disease outbreaks. The Kudos, “Compton J. Tucker Retires from NASA and is Named NAS Fellow,” provides more details about Compton’s research achievements and all of the other scientific awards and honors received throughout his career.
      Barry Lefer
      Associate Director of Research, Earth Science Division
      Share








      Details
      Last Updated Sep 10, 2025 Related Terms
      Earth Science View the full article
    • By Amazing Space
      LIVE NOW: CLOSE UP VIEWS OF THE SUN 8th September
    • By Amazing Space
      BLOOD MOON TONIGHT! Total Lunar Eclipse September 7, 2025 + 5 Amazing Moon Features You Can See!
  • Check out these Videos

×
×
  • Create New...