Jump to content

Meet Hector Chavez: Leading Johnson’s Giant Leap into Low Earth Orbit


Recommended Posts

  • Publishers
Posted

As systems integration team lead for NASA’s Commercial Low Earth Orbit Development Program (CLDP), Hector Chavez helps build a future where NASA and private industry work together to push the boundaries of space exploration.

With the rise of commercial providers in the space sector, Chavez’s team works to ensure that these companies can develop end-to-end systems to support NASA’s low Earth orbit operations—from transporting crew and cargo to operating mission centers. His team’s role is to assess how commercial providers are using their systems engineering processes to achieve program goals and objectives.

A portrait of a man wearing glasses, a white dress shirt, and a navy tie with red dots. He is seated in front of the U.S. flag and NASA’s official emblem.
Official portrait of Hector Chavez.
NASA/David DeHoyos

With a background that spans both the National Nuclear Security Administration and NASA, Chavez brings knowledge and insight into working with interdisciplinary teams to create complex, reliable systems. He has collaborated across organizations, contracts, and government to ensure design and operational improvements were carried out safely and reliably.

“Systems integration brings different systems together to deliver capabilities that can’t be achieved alone,” said Chavez.

His previous role in NASA’s Safety and Mission Assurance office deepened his expertise in mitigating technical risks in human spaceflight by integrating engineering, health, and safety considerations into the development of space exploration vehicles.

Two individuals in cleanroom attire, including white lab coats, hairnets, and gloves, work near a large metallic optical system test assembly in a clean room environment.
Hector Chavez and the team prepare to lift and install a receiver telescope assembly for the Optical Development System, used to test the alignment and performance of the optical systems for NASA’s Ice, Cloud, and land Elevation Satellite-2 mission, in a clean room at Goddard Space Flight Center in Greenbelt, Maryland.
NASA

Now with CLDP, Chavez helps these companies navigate NASA’s design processes without stifling innovation. “Our challenge is to communicate what we’ve identified during technical reviews without prohibiting commercial partners from developing innovative solutions,” he said.

One recent success was the team’s development of two technical standards for docking systems and payload interfaces that will help ensure these systems’ compatibility with existing technologies. This work is essential in allowing commercial low Earth orbit systems to seamlessly integrate with NASA’s heritage designs, a key step toward realizing the agency’s vision for sustained commercial operations in space.

When asked about the biggest opportunities and challenges in his role, Chavez emphasizes the importance of early collaboration. By engaging with commercial partners at the early stages of the system development life cycle, NASA can provide feedback that shapes the future of commercial low Earth orbit architecture.

“We identify technical issues and lessons learned without dictating design solutions, allowing for innovation while ensuring safety and reliability,” explained Chavez.

Two men in suits exchange a handshake during a formal event. One man, smiling, holds an object wrapped in a dark cloth, while the other looks on with a slight smile. Behind them is a flag with a seal.
Hector Chavez receives an award from the U.S. Department of Energy.

Chavez’s approach to leadership and teamwork is rooted in his values of perseverance, integrity, and encouragement. These principles have helped guide the development of CLDP’s mission and vision statements, creating an environment that promotes collaboration and creativity. 

He is passionate about building a team culture where people feel empowered to take responsible risks and explore solutions.

A family poses together with an astronaut in a NASA jumpsuit during a Silver Snoopy Award ceremony. The father holds a small child, while the mother displays the Silver Snoopy Award certificate. A large decorated cake featuring Snoopy and the text ‘Congratulations Hector! Silver Snoopy Award 2007’ is placed in front of them.
Hector Chavez receives a Silver Snoopy Award with his family at NASA’s Johnson Space Center in Houston.
NASA

As NASA prepares for Artemis missions and the next generation of space explorers, Chavez offers advice to the Artemis Generation: “Never do it alone. Build a community and find common ground to share a vision.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE - Earth From Space Views - Seen From The ISS
    • By European Space Agency
      Video: 00:01:38 On 11 June, engineers at OHB’s facilities in Germany joined together the two main parts of ESA’s Plato mission. 
      They used a special crane to lift Plato’s payload module, housing its 26 ultra-sensitive cameras, into the air and carefully line it up over the service module. The supporting service module contains everything else that the spacecraft needs to function, including subsystems for power, propulsion and communication with Earth. 
      With millimetre-level precision, the engineers gently lowered the payload module into place. Once perfectly positioned, the team tested the electrical connections. 
      Finally, they securely closed a panel that connects the payload module to the service module both physically and electronically (seen ‘hanging’ horizontally above the service module in this image). This panel, which opens and closes with hinges, also contains the electronics to process data from the cameras. 
      Now in one piece, Plato is one step closer to beginning its hunt for Earth-like planets.  
      In the coming weeks, the spacecraft will undergo tests to ensure its cameras and data processing systems still work perfectly. 
      Then it will be driven from OHB’s cleanrooms to ESA’s technical heart (ESTEC) in the Netherlands. At ESTEC, engineers will complete the spacecraft by fitting it with a combined sunshield and solar panel module. 
      Following a series of essential tests to confirm that Plato is fit for launch and ready to work in space, it will be shipped to Europe’s launch site in French Guiana. 
      The mission is scheduled to launch on an Ariane 6 in December 2026. 
      Access the related broadcast quality video footage. 
      ESA’s Plato (PLAnetary Transits and Oscillations of stars) will use 26 cameras to study terrestrial exoplanets in orbits up to the habitable zone of Sun-like stars.  
      Plato's scientific instrumentation, consisting of the cameras and electronic units, is provided through a collaboration between ESA and the Plato Mission Consortium. This Consortium is composed of various European research centres, institutes and industries, led by the German Aerospace Center (DLR). The spacecraft is being built and assembled by the industrial Plato Core Team led by OHB together with Thales Alenia Space and Beyond Gravity. 
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Since childhood, Derrick Bailey always had an early fascination with aeronautics. Military fighter jet pilots were his childhood heroes, and he dreamed of joining the aerospace industry. This passion was a springboard into his 17-year career at NASA, where Bailey plays an important role in enabling successful rocket launches.

      Bailey is the Launch Vehicle Certification Manager in the Launch Services Program (LSP) within the Space Operations Mission Directorate. In this role, he helps NASA outline the agency’s risk classifications of new rockets from emerging and established space companies.

      “Within my role, I formulate a series of technical and process assessments for NASA LSP’s technical team to understand how companies operate, how vehicles are designed and qualified, and how they perform in flight,” Bailey said.

      Beyond technical proficiency and readiness, a successful rocket launch relies on establishing a strong foundational relationship between NASA and the commercial companies involved. Bailey and his team ensure effective communication with these companies to provide the guidance, data, and analysis necessary to support them in overcoming challenges.

      “We work diligently to build trusting relationships with commercial companies and demonstrate the value in partnering with our team,” Bailey said.

      Bailey credits a stroke of fate that landed him at the agency. During his senior year at Georgia Tech, where he was pursuing a degree in aerospace engineering, Bailey almost walked past the NASA tent at a career fair. However, he decided to grab a NASA sticker and strike up a conversation, which quickly turned into an impromptu interview. He walked away that day with a job offer to work on the now-retired Space Shuttle Program at the agency’s Kennedy Space Center in Florida.

      “I never imagined working at NASA,” Bailey said. “Looking back, it’s unbelievable that a chance encounter resulted in securing a job that has turned into an incredible career.”

      Thinking about the future, Bailey is excited about new opportunities in the commercial space industry. Bailey sees NASA as a crucial advisor and mentor for commercial sector while using industry capabilities to provide more cost-effective access to space.

      Derrick Bailey, launch vehicle certification manager for NASA’s Launch Services Program
      “We are the enablers,” Bailey said of his role in the directorate. “It is our responsibility to provide the best opportunity for future explorers to begin their journey of discovery in deep space and beyond.”

      Outside of work, Bailey enjoys spending time with his family, especially his two sons, who keep him busy with trips to the baseball diamond and homework sessions. Bailey also enjoys hands-on activities, like working on cars, off-road vehicles, and house projects – hobbies he picked up from his mechanically inclined father. Additionally, at the beginning of 2025, his wife accepted a program specialist position with LSP, an exciting development for the entire Bailey family.

      “One of my wife’s major observations early on in my career was how much my colleagues genuinely care about one another and empower people to make decisions,” Bailey explained. “These are the things that make NASA the number one place to work in the government.”
      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit: 
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Jun 26, 2025 Related Terms
      Space Operations Mission Directorate People of Space Operations Explore More
      4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 1 week ago 4 min read Meet the Space Ops Team: Christine Braden
      Article 1 month ago 4 min read NASA Enables SPHEREx Data Return Through Commercial Partnership
      Article 2 months ago View the full article
    • By European Space Agency
      The European Space Agency’s Mars Express has captured a swirl of colour on the Red Planet, with yellows and rust-oranges meeting deep reds and browns. Lurking within this martian palette are not one but four dust devils, each snaking their way across the surface.
      View the full article
    • By Amazing Space
      LIVE : AI Bot DESTROYS Flat Earth Theory - Space Facts vs Conspiracy
  • Check out these Videos

×
×
  • Create New...