Members Can Post Anonymously On This Site
Astronaut José Hernández Boards Discovery
-
Similar Topics
-
By NASA
While it may sound like the opening to a punchline, this scientific question was at the heart of a research experiment that orbited the Moon aboard Artemis I.NASA astronaut and Expedition 65 Flight Engineer Mark Vande Hei caring for chili peppers aboard the International Space Station. NASA New research uncovers the connection between space agriculture and astronaut health. A study published in npj Microgravity shows how analyzing diverse datasets together can reveal insights that might otherwise be missed — in this case, linking space-grown food quality to astronaut nutrition and gut health.
The paper reviewed previous studies of plants grown aboard the International Space Station. The authors found that some edible plants grown in low Earth orbit have lower concentrations of essential nutrients, like calcium and magnesium, than those grown on Earth.
The reduced levels of these nutrients could make crops not as effective in mitigating the bone loss and reduced immune function that astronauts encounter in space.
Working Groups Uncover Hidden Health Connections
Three Analysis Working Groups from NASA’s Open Science Data Repository collaborated to make this paper possible. These discipline-specific groups typically work independently, but this project sparked conversations among researchers with different specialties.
Researchers combined plant data, crop nutrition profiles, gut studies, and astronaut blood biomarkers — a data integration effort of the Biological and Physical Sciences Division open science model. The work also draws on data from JAXA (Japan Aerospace Exploration Agency).
For NASA, these findings offer new insights into how to feed and support astronauts in space, particularly on long-duration missions to the Moon and Mars.
Seeks Ways to Improve Space Diets
The study also examined increased intestinal permeability — often called “leaky gut” — a condition that can result from poor nutrition and may be exacerbated by the space environment. Intestinal permeability may interfere with how astronauts absorb nutrients and regulate immune responses.
If properly engineered, space-grown crops could offer a solution to these health challenges. The team outlined several potential strategies, including bioengineering plants with higher nutrient content, incorporating more antioxidant-rich species, and designing personalized nutrition plans using astronauts’ genetic information.
The study suggests targeting specific biological pathways, such as using compounds like quercetin, an antioxidant found in certain crops, to address bone health challenges at the molecular level. The approach emphasizes designing nutrition plans based on individual astronaut physiology, including how well their digestive systems can absorb nutrients.
Related Resources
Open Science Data Repository
Open Science Data Repository Analysis Working Groups (AWG)
About BPS
NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
View the full article
-
By NASA
Left: Gigantic Jet Event from the International Space Station, taken by NASA Astronaut Nichole Ayers. (Credit: Ayers) Right: Sprite event appearing over a lightning strike, seen from space. This photo was taken by astronauts aboard the International Space Station during Expedition 44. Credit: NASA astronauts on board Expedition 44 Did you see that gorgeous photo NASA astronaut Nichole Ayers took on July 3, 2025? Originally thought to be a sprite, Ayers confirmed catching an even rarer form of a Transient Luminous Events (TLEs) — a gigantic jet.
“Nichole Ayers caught a rare and spectacular form of a TLE from the International Space Station — a gigantic jet,” said Dr. Burcu Kosar, Principal Investigator of the Spritacular project.
Gigantic jets are a powerful type of electrical discharge that extends from the top of a thunderstorm into the upper atmosphere. They are typically observed by chance — often spotted by airline passengers or captured unintentionally by ground-based cameras aimed at other phenomena. Gigantic jets appear when the turbulent conditions at towering thunderstorm tops allow for lightning to escape the thunderstorm, propagating upwards toward space. They create an electrical bridge between the tops of the clouds (~20 km) and the upper atmosphere (~100 km), depositing a significant amount of electrical charge.
Sprites, on the other hand, are one of the most commonly observed types of TLEs — brief, colorful flashes of light that occur high above thunderstorms in the mesosphere, around 50 miles (80 kilometers) above Earth’s surface. Unlike gigantic jets, which burst upward directly from thundercloud tops, sprites form independently, much higher in the atmosphere, following powerful lightning strikes. They usually appear as a reddish glow with intricate shapes resembling jellyfish, columns, or carrots and can span tens of kilometers across. Sprites may also be accompanied or preceded by other TLEs, such as Halos and ELVEs (Emissions of Light and Very Low Frequency perturbations due to Electromagnetic Pulse Sources), making them part of a larger and visually spectacular suite of high-altitude electrical activity. The world of Transient Luminous Events is a hidden zoo of atmospheric activity playing out above the storms. Have you captured an image of a jet, sprite, or other type of TLE? Submit your photos to Spritacular.org to help scientists study these fascinating night sky phenomena!
Facebook logo @nasascience @nasascience Instagram logo @nasascience Linkedin logo @nasascience Share
Details
Last Updated Aug 12, 2025 Related Terms
Citizen Science Heliophysics Explore More
1 min read Snapshot Wisconsin Celebrates 10 Years and 100 Million Photos Collected!
The Snapshot Wisconsin project recently collected their 100 millionth trail camera photo! What’s more, this…
Article
6 days ago
4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
Article
1 week ago
2 min read Radio JOVE Volunteers Tune In to the Sun’s Low Notes
Article
3 weeks ago
View the full article
-
By NASA
Portrait of NASA astronaut Jim LovellCredit: NASA The following is a statement from acting NASA Administrator Sean Duffy on the passing of famed Apollo astronaut Jim Lovell. He passed away Aug. 7, in Lake Forest, Illinois. He was 97 years old.
“NASA sends its condolences to the family of Capt. Jim Lovell, whose life and work inspired millions of people across the decades. Jim’s character and steadfast courage helped our nation reach the Moon and turned a potential tragedy into a success from which we learned an enormous amount. We mourn his passing even as we celebrate his achievements.
“From a pair of pioneering Gemini missions to the successes of Apollo, Jim helped our nation forge a historic path in space that carries us forward to upcoming Artemis missions to the Moon and beyond.
“As the Command Module Pilot for Apollo 8, Jim and his crewmates became the first to lift off on a Saturn V rocket and orbit the Moon, proving that the lunar landing was within our reach. As commander of the Apollo 13 mission, his calm strength under pressure helped return the crew safely to Earth and demonstrated the quick thinking and innovation that informed future NASA missions.
“Known for his wit, this unforgettable astronaut was nicknamed Smilin’ Jim by his fellow astronauts because he was quick with a grin when he had a particularly funny comeback.
“Jim also served our country in the military, and the Navy has lost a proud academy graduate and test pilot. Jim Lovell embodied the bold resolve and optimism of both past and future explorers, and we will remember him always.”
For more information about Lovell’s NASA career, and his agency biography, visit:
https://www.nasa.gov/former-astronaut-james-a-lovell
-end-
Grace Bartlinski / Cheryl Warner
Headquarters, Washington
202-358-1600
grace.bartlinksi@nasa.gov / cheryl.m.warner@nasa.gov
Share
Details
Last Updated Aug 08, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
James A. Lovell Jr. Apollo Apollo 13 Apollo 8 Astronauts Gemini
View the full article
-
By NASA
NASA Astronaut Barry “Butch” WilmoreNASA/Aubrey Gemignani
After 25 years at NASA, flying in four different spacecraft, accumulating 464 days in space, astronaut and test pilot Butch Wilmore has retired from NASA.
The Tennessee native earned a bachelor’s and a master’s degree in electrical engineering from Tennessee Technological University and a master’s degree in aviation systems from the University of Tennessee.
Wilmoreis a decorated U.S. Navy captain who has flown numerous tactical aircraft operationally while deploying aboard four aircraft carriers during peacetime and combat operations. A graduate of the U.S. Naval Test Pilot School, he went on to serve as a test pilot before NASA selected him to become an astronaut in 2000.
“Butch’s commitment to NASA’s mission and dedication to human space exploration is truly exemplary,” said Steve Koerner, acting director of NASA’s Johnson Space Center in Houston. “His lasting legacy of fortitude will continue to impact and inspire the Johnson workforce, future explorers, and the nation for generations. On behalf of NASA’s Johnson Space Center, we thank Butch for his service.”
During his time at NASA, Wilmore completed three missions launching aboard the space shuttle Atlantis, Roscosmos Soyuz, and Boeing Starliner to the International Space Station. Wilmore also returned to Earth aboard a SpaceX Dragon spacecraft. Additionally, he conducted five spacewalks, totaling 32 hours outside the orbital laboratory.
“Throughout his career, Butch has exemplified the technical excellence of what is required of an astronaut. His mastery of complex systems, coupled with his adaptability and steadfast commitment to NASA’s mission, has inspired us all,” said Joe Acaba, chief of the Astronaut Office at NASA Johnson. “As he steps into this new chapter, that same dedication will no doubt continue to show in whatever he decides to do next.”
Most recently, Wilmore launched aboard Boeing’s Starliner spacecraft on June 5, 2024, for its first crewed flight test mission, arriving at the space station the following day. While aboard the station, Wilmore completed numerous tasks, including a spacewalk to help remove a radio frequency group antenna assembly from the station’s truss and collected samples and surface material for analysis from the Destiny laboratory and the Quest airlock.
“From my earliest days, I have been captivated by the marvels of creation, looking upward with an insatiable curiosity. This curiosity propelled me into the skies, and eventually to space, where the magnificence of the cosmos mirrored the glory of its creator in ways words can scarcely convey,” said Wilmore. “Even as I ventured beyond Earth’s limits, I remained attuned to the beauty and significance of the world below, recognizing the same intricate design evident among the stars is also woven into the fabric of life at home.”
Learn more about how NASA explores the unknown and innovates for the benefit of humanity at:
https://www.nasa.gov/
Courtney Beasley
Johnson Space Center, Houston
281-910-4989
courtney.m.beasley@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.