Jump to content

Arctic Sea Ice Near Historic Low; Antarctic Ice Continues Decline


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Image of Arctic sea ice minimum extent on September 11, 2024. The yellow boundary shows the minimum extent averaged over the 30-year period from 1981 to 2010.
This image, taken from a data visualization, shows Arctic sea ice minimum extent on September 11, 2024. The yellow boundary shows the minimum extent averaged over the 30-year period from 1981 to 2010. Download high-resolution video and images from NASA’s Scientific Visualization Studio: https://svsdev.gsfc.nasa.gov/5382
NASA’s Scientific Visualization Studio/Trent L. Schindler

Arctic sea ice retreated to near-historic lows in the Northern Hemisphere this summer, likely melting to its minimum extent for the year on Sept.11, 2024, according to researchers at NASA and the National Snow and Ice Data Center (NSIDC). The decline continues the decades-long trend of shrinking and thinning ice cover in the Arctic Ocean.

The amount of frozen seawater in the Arctic fluctuates during the year as the ice thaws and regrows between seasons. Scientists chart these swings to construct a picture of how the Arctic responds  over time to rising air and sea temperatures and longer melting seasons. Over the past 46 years, satellites have observed persistent trends of more melting in the summer and less ice formation in winter.

This summer, Arctic sea ice decreased to a its minimum extent on September 11, 2024. According to the National Snow and Ice Data Center this is the 7th lowest in the satellite record). The decline continues the long-term trend of shrinking ice cover in the Arctic Ocean.
Credit: NASA’s Goddard Space Flight Center

Tracking sea ice changes in real time has revealed wide-ranging impacts, from losses and changes in polar wildlife habitat to impacts on local communities in the Arctic and international trade routes.

This year, Arctic sea ice shrank to a minimal extent of 1.65 million square miles (4.28 million square kilometers). That’s about 750,000 square miles (1.94 million square kilometers) below the 1981 to 2010 end-of-summer average of 2.4 million square miles (6.22 million square kilometers). The difference in ice cover spans an area larger than the state of Alaska. Sea ice extent is defined as the total area of the ocean with at least 15% ice concentration.

Seventh-Lowest in Satellite Record

This year’s minimum remained above the all-time low of 1.31 million square miles (3.39 million square kilometers) set in September 2012. While sea ice coverage can fluctuate from year to year, it has trended downward since the start of the satellite record for ice in the late 1970s. Since then, the loss of sea ice has been about 30,000 square miles (77,800 square kilometers) per year, according to NSIDC.

Scientists currently measure sea ice extent using data from passive microwave sensors aboard satellites in the Defense Meteorological Satellite Program, with additional historical data from the Nimbus-7 satellite, jointly operated by NASA and the National Oceanic and Atmospheric Administration (NOAA).

Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,

Nathan Kurtz

Nathan Kurtz

Chief, NASA's Cryospheric Sciences Laboratory

Sea ice is not only shrinking, it’s getting younger, noted Nathan Kurtz, lab chief of NASA’s Cryospheric Sciences Laboratory at the agency’s Goddard Space Flight Center in Greenbelt, Maryland.

“Today, the overwhelming majority of ice in the Arctic Ocean is thinner, first-year ice, which is less able to survive the warmer months. There is far, far less ice that is three years or older now,” Kurtz said.

Ice thickness measurements collected with spaceborne altimeters, including NASA’s ICESat and ICESat-2 satellites, have found that much of the oldest, thickest ice has already been lost. New research out of NASA’s Jet Propulsion Laboratory in Southern California shows that in the central Arctic, away from the coasts, fall sea ice now hovers around 4.2 feet (1.3 meters) thick, down from a peak of 8.8 feet (2.7 meters) in 1980.

Another Meager Winter Around Antarctica

Sea ice in the southern polar regions of the planet was also low in 2024. Around Antarctica, scientists are tracking near record-low sea ice at a time when it should have been growing extensively during the Southern Hemisphere’s darkest and coldest months.

Ice around the continent is on track to be just over 6.6 million square miles (16.96 million square kilometers). The average maximum extent between 1981 and 2010 was 7.22 million square miles (18.71 million square kilometers).

The meager growth so far in 2024 prolongs a recent downward trend. Prior to 2014, sea ice in the Antarctic was increasing slightly by about 1% per decade. Following a spike in 2014, ice growth has fallen dramatically. Scientists are working to understand the cause of this reversal. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change. 

“While changes in sea ice have been dramatic in the Arctic over several decades, Antarctic sea ice was relatively stable. But that has changed,” said Walt Meier, a sea ice scientist at NSIDC. “It appears that global warming has come to the Southern Ocean.”

In both the Arctic and Antarctic, ice loss compounds ice loss. This is due to the fact that while bright sea ice reflects most of the Sun’s energy back to space, open ocean water absorbs 90% of it. With more of the ocean exposed to sunlight, water temperatures rise, further delaying sea ice growth. This cycle of reinforced warming is called ice-albedo feedback.

Overall, the loss of sea ice increases heat in the Arctic, where temperatures have risen about four times the global average, Kurtz said.

About the Author

Sally Younger

Senior Science Writer

Share

Details

Last Updated
Sep 24, 2024
Location
Goddard Space Flight Center

Related Terms

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Examines Low Brightness, High Interest Galaxy
      This NASA/ESA Hubble Space Telescope image features a portion of the spiral galaxy NGC 45. ESA/Hubble & NASA, D. Calzetti, R. Chandar; Acknowledgment: M. H. Özsaraç This NASA/ESA Hubble Space Telescope image zooms in on the feathery spiral arms of the galaxy NGC 45, which lies just 22 million light-years away in the constellation Cetus (the Whale).
      The portrait uses data drawn from two complementary observing programs. The first took a broad view of 50 nearby galaxies, leveraging Hubble’s ability to observe ultraviolet through visible into near-infrared light to study star formation in these galaxies. The second program examined many of the same nearby galaxies as the first, narrowing in on a particular wavelength of red light called H-alpha. Star-forming nebulae are powerful producers of H-alpha light, and several of these regions are visible across NGC 45 as bright pink-red patches.
      These observing programs aimed to study star formation in galaxies of different sizes, structures, and degrees of isolation — and NGC 45 is a particularly interesting target. Though it may appear to be a regular spiral galaxy, NGC 45 is a remarkable type called a low surface brightness galaxy.
      Low surface brightness galaxies are fainter than the night sky itself, making them incredibly difficult to detect. They appear unexpectedly faint because they have relatively few stars for the volume of gas and dark matter they carry. In the decades since astronomers serendipitously discovered the first low surface brightness galaxy in 1986, researchers have learned that 30–60% of all galaxies may fall into this category. Studying these hard-to-detect galaxies is key to understanding how galaxies form and evolve, and Hubble’s sensitive instruments are equal to the task.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Aug 14, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Galaxies, Stars, & Black Holes Hubble Space Telescope Spiral Galaxies Star-forming Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
      35 Years of Hubble Images



      Hubble’s Night Sky Challenge



      Hearing Hubble



      3D Hubble Models


      View the full article
    • By European Space Agency
      Combining 25 years of space-based data with ocean sampling, scientists have uncovered a change in the microscopic organisms that underpin the Southern Ocean’s food chain and carbon storage.
      View the full article
    • By NASA
      An artist’s concept of the Moon (right) and Mars (center) against the starry expanse of space. A sliver of the Earth’s horizon can be seen in the foreground.Credit: NASA NASA is accepting U.S. submissions for the second phase of the agency’s LunaRecycle Challenge, a Moon-focused recycling competition. The challenge aims to develop solutions for recycling common trash materials – like fabrics, plastics, foam, and metals – that could accumulate from activities such as system operations, industrial activities, and building habitats in deep space.
      Phase 2 of the LunaRecycle Challenge is divided into two levels: a milestone round and the final round. Submissions for the milestone round are open until January 2026, with finalists from that round announced in February. Up to 20 finalists from the milestone round will compete in the challenge’s in-person prototype demonstrations and final judging, slated for the following August. Cash prizes totaling $2 million are available for successful solutions in both rounds. 
      “NASA is eager to see how reimagining these materials can be helpful to potential future planetary surface missions,” said Jennifer Edmunson, acting program manager for Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “I’m confident focusing on the most critical trash items – and integration of the prototype and digital twin competition tracks – will yield remarkable solutions that could enable a sustainable human presence off-Earth and transform the future of space exploration.”
      Estimates indicate a crew of four astronauts could generate more than 2,100 kilograms (4,600 pounds) of single-use waste – including food packaging, plastic films, foam packaging, clothing, and more – within 365 days. Successful solutions in LunaRecycle’s Phase 2 should manage realistic trash volumes while minimizing resource inputs and crew time and operating safely with minimal hazards.
      Phase 2 is only open to U.S. individuals and teams. Participants can submit solutions regardless of whether they competed in the earlier Phase 1 competition.
      All Phase 2 participants are expected to build a physical prototype. In addition, participants can submit a digital twin of their prototype for additional awards in the milestone and final rounds.
      The LunaRecycle Challenge is a NASA Centennial Challenge, part of the Prizes, Challenges and Crowdsourcing Program within NASA’s Space Technology Mission Directorate. LunaRecycle Phase 1 received record-breaking interest from the global innovator community. The challenge received more than 1,200 registrations – more than any competition in the 20-year history of Centennial Challenges – and a panel of 50 judges evaluated nearly 200 submissions. Seventeen teams were selected as Phase 1 winners, representing five countries and nine U.S. states. Winners were announced via livestream on NASA Marshall’s YouTube channel.
      LunaRecycle is managed at NASA Marshall with subject matter experts primarily at the center, as well as NASA’s Kennedy Space Center in Florida and NASA’s Ames Research Center in California’s Silicon Valley. NASA, in partnership with The University of Alabama College of Engineering, manages the challenge with coordination from former Centennial Challenge winner AI SpaceFactory and environmental sustainability industry member Veolia.
      To learn more about LunaRecycle’s second phase, including registration for upcoming webinars, visit:
                                                                  https://www.nasa.gov/lunarecycle
      -end-
      Jasmine Hopkins
      NASA Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Taylor Goodwin
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      taylor.goodwin@nasa.gov
      Share
      Details
      Last Updated Aug 11, 2025 LocationNASA Headquarters Related Terms
      NASA Headquarters Ames Research Center Centennial Challenges Kennedy Space Center Marshall Space Flight Center Prizes, Challenges, and Crowdsourcing Program Space Technology Mission Directorate View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ocean currents swirl around North America (center left) and Greenland (upper right) in this data visualization created using NASA’s ECCO model. Advanced computing is helping oceanographers decipher hot spots of phytoplankton growth.NASA’s Scientific Visualization Studio As Greenland’s ice retreats, it’s fueling tiny ocean organisms. To test why, scientists turned to a computer model out of JPL and MIT that’s been called a laboratory in itself.
      Runoff from Greenland’s ice sheet is kicking nutrients up from the ocean depths and boosting phytoplankton growth, a new NASA-supported study has found. Reporting in Nature Communications: Earth & Environment, the scientists used state-of-the art-computing to simulate marine life and physics colliding in one turbulent fjord. Oceanographers are keen to understand what drives the tiny plantlike organisms, which take up carbon dioxide and power the world’s fisheries.
      Greenland’s mile-thick ice sheet is shedding some 293 billion tons (266 billion metric tons) of ice per year. During peak summer melt, more than 300,000 gallons (1,200 cubic meters) of fresh water drain into the sea every second from beneath Jakobshavn Glacier, also known as Sermeq Kujalleq,the most active glacier on the ice sheet. The waters meet and tumble hundreds of feet below the surface.
      Teal-colored phytoplankton bloom off the Greenland coast in this satellite image captured in June 2024 by NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) mission.NASA The meltwater plume is fresh and more buoyant than the surrounding saltwater. As it rises, scientists have hypothesized, it may be delivering nutrients like iron and nitrate — a key ingredient in fertilizer — to phytoplankton floating at the surface.
      Researchers track these microscopic organisms because, though smaller by far than a pinhead, they’re titans of the ocean food web. Inhabiting every ocean from the tropics to the polar regions, they nourish krill and other grazers that, in turn, support larger animals, including fish and whales.
      Previous work using NASA satellite data found that the rate of phytoplankton growth in Arctic waters surged 57% between 1998 and 2018 alone. An infusion of nitrate from the depths would be especially pivotal to Greenland’s phytoplankton in summer, after most nutrients been consumed by prior spring blooms. But the hypothesis has been hard to test along the coast, where the remote terrain and icebergs as big as city blocks complicate long-term observations.
      “We were faced with this classic problem of trying to understand a system that is so remote and buried beneath ice,” said Dustin Carroll, an oceanographer at San José State University who is also affiliated with NASA’s Jet Propulsion Laboratory in Southern California. “We needed a gem of a computer model to help.”
      Sea of Data
      To re-create what was happening in the waters around Greenland’s most active glacier, the team harnessed a model of the ocean developed at JPL and the Massachusetts Institute of Technology in Cambridge. The model ingests nearly all available ocean measurements collected by sea- and satellite-based instruments over the past three decades. That amounts to billions of data points, from water temperature and salinity to pressure at the seafloor. The model is called Estimating the Circulation and Climate of the Ocean-Darwin (ECCO-Darwin for short).
      Simulating “biology, chemistry, and physics coming together” in even one pocket along Greenland’s 27,000 miles (43,000 kilometers) of coastline is a massive math problem, noted lead author Michael Wood, a computational oceanographer at San José State University. To break it down, he said the team built a “model within a model within a model” to zoom in on the details of the fjord at the foot of the glacier.
      Using supercomputers at NASA’s Ames Research Center in Silicon Valley, they calculated that deepwater nutrients buoyed upward by glacial runoff would be sufficient to boost summertime phytoplankton growth by 15 to 40% in the study area.
      More Changes in Store
      Could increased phytoplankton be a boon for Greenland’s marine animals and fisheries? Carroll said that untangling impacts to the ecosystem will take time. Melt on the Greenland ice sheet is projected to accelerate in coming decades, affecting everything from sea level and land vegetation to the saltiness of coastal waters.
      “We reconstructed what’s happening in one key system, but there’s more than 250 such glaciers around Greenland,” Carroll said. He noted that the team plans to extend their simulations to the whole Greenland coast and beyond.
      Some changes appear to be impacting the carbon cycle both positively and negatively: The team calculated how runoff from the glacier alters the temperature and chemistry of seawater in the fjord, making it less able to dissolve carbon dioxide. That loss is canceled out, however, by the bigger blooms of phytoplankton taking up more carbon dioxide from the air as they photosynthesize.
      Wood added: “We didn’t build these tools for one specific application. Our approach is applicable to any region, from the Texas Gulf to Alaska. Like a Swiss Army knife, we can apply it to lots of different scenarios.”
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 
      Written by Sally Younger
      2025-101
      Share
      Details
      Last Updated Aug 06, 2025 Related Terms
      Earth Carbon Cycle Earth Science Ice & Glaciers Jet Propulsion Laboratory Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Water on Earth Explore More
      4 min read NASA’s Perseverance Rover Captures Mars Vista As Clear As Day
      Article 16 minutes ago 1 min read NASA’s Black Marble: Stories from the Night Sky
      Studying the glowing patterns of Earth’s surface helps us understand human activity, respond to disasters,…
      Article 2 days ago 4 min read STEM Educators Are Bringing Hands-On NASA Science into Virginia Classrooms
      Professional learning experiences are integral to the enhancement of classroom instruction. Teachers, at the forefront…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...