Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9911aa-k1340x520.png

If springtime on Earth were anything like it will be on Uranus, we would be experiencing waves of massive storms, each one covering the country from Kansas to New York, with temperatures of 300 degrees below zero.

A dramatic new time-lapse movie by the Hubble telescope shows for the first time seasonal changes on the planet. Once considered one of the blander-looking planets, Uranus is now revealed as a dynamic world with the brightest clouds in the outer solar system and a fragile ring system that wobbles like an unbalanced wagon wheel. The clouds are probably made of crystals of methane, which condense as warm bubbles of gas well up from deep in the planet's atmosphere.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 Min Read Studying Storms from Space Station
      An artist’s impression of a blue jet as observed from the space station. Credits: Mount Visual/University of Bergen/DTU Science in Space June 2025
      Scientists use instruments on the International Space Station to study phenomena in Earth’s ionosphere or upper atmosphere including thunderstorms, lightning, and transient luminous events (TLEs). TLEs take many forms, including blue jets, discharges that grow upward into the stratosphere from cloud tops, and colorful bursts of energy above storms called Stratospheric/Mesospheric Perturbations Resulting from Intense Thunderstorm Electrification or SPRITES.
      Red SPRITES are visible above a line of thunderstorms off the coast of South Africa.NASA TLEs can disrupt communication systems on the ground and pose a threat to aircraft and spacecraft. Understanding these phenomena also could improve atmospheric models and weather predictions. Because these events occur well above the altitudes of normal lightning and storm clouds, they are difficult to observe from the ground. ASIM, an investigation from ESA (European Space Agency), uses a monitor on the exterior of the space station to collect data on TLEs. These data are providing insights into how thunderstorms affect Earth’s atmosphere and helping to improve atmospheric models used for weather and climate predictions.
      ELVES and coronas
      A study based on ASIM data confirmed that lightning-like discharges at the tops of thunderstorms can create another type of TLE, massive glowing rings in the upper atmosphere known as Emissions of Light and VLF Perturbations from EMP events, or ELVES. This experiment showed that these discharges influence the ionosphere and helped scientists learn more about Earth and space weather.
      ASIM-based research also described the physical properties of different types of corona discharges in thunderstorm clouds. Corona discharges are linked to powerful but short-lived electrical bursts near the tops of clouds. The data provide a reference to support further investigation into the mechanisms behind these discharges and their role in the initiation of lightning, an important problem in lightning physics.
      Other researchers used ASIM measurements along with ground-based electric field measurements to determine the height of a blue discharge from a thundercloud.
      Cloud close-ups
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Lightning on Earth as captured from the space station.NASA Another ESA investigation, Thor-Davis, evaluated use of a special camera to photograph high-altitude thunderstorms through the windows of the space station’s cupola. The camera can observe thunderstorm electrical activity at up to 100,000 frames per second and could be a useful tool for space-based observation of severe electrical storms and other applications.
      Seeing storms from satellites
      Deployment of the Light-1 CubeSat from the space station.NASA The JAXA (Japan Aerospace Exploration Agency) investigation Light-1 CubeSat used detectors integrated into a compact satellite to observe terrestrial gamma-ray flashes in the upper atmosphere. These high intensity, energetic events can expose aircraft, aircraft electronics, and passengers to excessive radiation. Researchers are planning to compare data collected from the mission with ground-based observations to provide more comprehensive maps of lightning and thunderstorms in the atmosphere. Small satellite detectors could cost less and be manufactured in less time than other approaches.

      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Space Station Research Results
      Latest News from Space Station Research
      Station Researcher’s Guide Series
      View the full article
    • By European Space Agency
      ESA Impact: Pick of our spring space snaps

      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Advanced Composites Consortium team members gathered during May 2025 at NASA’s Langley Research Center in Virginia for a technical review of activities in the Hi-Rate Composite Aircraft Manufacturing project.NASA NASA and its partners in the Advanced Composites Consortium gathered at the agency’s Langley Research Center in Hampton, Virginia, on April 29-May 1, 2025.
      Team members from 22 organizations in the public-private partnership are collaborating to increase the production rate of composite aircraft, reduce costs, and improve performance.
      The team discussed results from the Technology Development Phase of NASA’s Hi-Rate Composite Aircraft Manufacturing (HiCAM) project.
      The project is evaluating concepts and competing approaches at the subcomponent scale to determine technologies with the greatest impact on manufacturing rate and cost. The most promising concepts will be demonstrated on full-scale wing and fuselage components during the next four years. 
      Through collaboration and shared investment, the team is increasing the likelihood of technologies being adopted for next-generation transports, ultimately lowering costs for operators and improving the U.S. competitive advantage in the commercial aircraft industry.
      Want to Learn More About Composite Aircraft Research?
      Go to the HiCAM project page here Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      2 min read NASA Composite Manufacturing Initiative Gains Two New Members
      Article 9 months ago 1 min read HiCAM 2023 Spring Review
      Article 2 years ago 1 min read HiCAM Research Team at Electroimpact
      HiCAM Research Team at Electroimpact
      Article 2 years ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated May 13, 2025 EditorJim BankeContactShannon Eichornshannon.eichorn@nasa.gov Related Terms
      Hi-Rate Composite Aircraft Manufacturing View the full article
    • By NASA
      5 Min Read Planetary Alignment Provides NASA Rare Opportunity to Study Uranus
      Artist's illustration showing a distant star going out of sight as it is eclipsed by Uranus – an event known as a planetary stellar occultation. Credits: NASA/Advanced Concepts Laboratory When a planet’s orbit brings it between Earth and a distant star, it’s more than just a cosmic game of hide and seek. It’s an opportunity for NASA to improve its understanding of that planet’s atmosphere and rings. Planetary scientists call it a stellar occultation and that’s exactly what happened with Uranus on April 7.
      Observing the alignment allows NASA scientists to measure the temperatures and composition of Uranus’ stratosphere – the middle layer of a planet’s atmosphere – and determine how it has changed over the last 30 years since Uranus’ last significant occultation.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This rendering demonstrates what is happening during a stellar occultation and illustrates an example of the light curve data graph recorded by scientists that enables them to gather atmospheric measurements, like temperature and pressure, from Uranus as the amount of starlight changes when the planet eclipses the star.NASA/Advanced Concepts Laboratory “Uranus passed in front of a star that is about 400 light years from Earth,” said William Saunders, planetary scientist at NASA’s Langley Research Center in Hampton, Virginia, and science principal investigator and analysis lead, for what NASA’s team calls the Uranus Stellar Occultation Campaign 2025. “As Uranus began to occult the star, the planet’s atmosphere refracted the starlight, causing the star to appear to gradually dim before being blocked completely. The reverse happened at the end of the occultation, making what we call a light curve. By observing the occultation from many large telescopes, we are able to measure the light curve and determine Uranus’ atmospheric properties at many altitude layers.”  
      We are able to measure the light curve and determine Uranus' atmospheric properties at many altitude layers.
      William Saunders
      Planetary Scientist at NASA's Langley Research Center
      This data mainly consists of temperature, density, and pressure of the stratosphere. Analyzing the data will help researchers understand how the middle atmosphere of Uranus works and could help enable future Uranus exploration efforts. 
      To observe the rare event, which lasted about an hour and was only visible from Western North America, planetary scientists at NASA Langley led an international team of over 30 astronomers using 18 professional observatories.
      Kunio Sayanagi, NASA’s principal investigator for the Uranus Stellar Occultation Campaign 2025, meeting virtually with partners and observing data from the Flight Mission Support Center at NASA’s Langley Research Center in Hampton, Virginia during Uranus’ stellar occultation event on April 7, 2025.NASA/Dave MacDonnell “This was the first time we have collaborated on this scale for an occultation,” said Saunders. “I am extremely grateful to each member of the team and each observatory for taking part in this extraordinary event. NASA will use the observations of Uranus to determine how energy moves around the atmosphere and what causes the upper layers to be inexplicably hot. Others will use the data to measure Uranus’ rings, its atmospheric turbulence, and its precise orbit around the Sun.”
      Knowing the location and orbit of Uranus is not as simple as it sounds. In 1986, NASA’s Voyager 2 spacecraft became the first and only spacecraft to fly past the planet – 10 years before the last bright stellar occultation occured in 1996. And, Uranus’ exact position in space is only accurate to within about 100 miles, which makes analyzing this new atmospheric data crucial to future NASA exploration of the ice giant.
      These investigations were possible because the large number of partners provided many unique views of the stellar occultation from many different instruments.
      NASA planetary scientist William Saunders and Texas A&M University research assistant Erika Cook in the control room of the McDonald Observatory’s Otto Struve Telescope in Jeff Davis County, Texas, during the Uranus stellar occultation on April 7, 2025.Joshua Santana Emma Dahl, a postdoctoral scholar at Caltech in Pasadena, California, assisted in gathering observations from NASA’s Infrared Telescope Facility (IRTF) on the summit of Mauna Kea in Hawaii – an observatory first built to support NASA’s Voyager missions.
      “As scientists, we do our best work when we collaborate. This was a team effort between NASA scientists, academic researchers, and amateur astronomers,” said Dahl. “The atmospheres of the gas and ice giant planets [Jupiter, Saturn, Uranus, and Neptune] are exceptional atmospheric laboratories because they don’t have solid surfaces. This allows us to study cloud formation, storms, and wind patterns without the extra variables and effects a surface produces, which can complicate simulations very quickly.”
      On November 12, 2024, NASA Langley researchers and collaborators were able to do a test run to prepare for the April occultation. Langley coordinated two telescopes in Japan and one in Thailand to observe a dimmer Uranus stellar occultation only visible from Asia. As a result, these observers learned how to calibrate their instruments to observe stellar occultations, and NASA was able to test its theory that multiple observatories working together could capture Uranus’ big event in April.
      Researchers from the Paris Observatory and Space Science Institute, in contact with NASA, also coordinated observations of the November 2024 occultation from two telescopes in India. These observations of Uranus and its rings allowed the researchers, who were also members of the April 7 occultation team, to improve the predictions about the timing on April 7 down to the second and also improved modeling to update Uranus’ expected location during the occultation by 125 miles.
      This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope exquisitely captures Uranus’s seasonal north polar cap and dim inner and outer rings. This Webb image also shows 9 of the planet’s 27 moons – clockwise starting at 2 o’clock, they are: Rosalind, Puck, Belinda, Desdemona, Cressida, Bianca, Portia, Juliet, and Perdita.NASA, ESA, CSA, STScI Uranus is almost 2 billion miles away from Earth and has an atmosphere composed of primarily hydrogen and helium. It does not have a solid surface, but rather a soft surface made of water, ammonia, and methane. It’s called an ice giant because its interior contains an abundance of these swirling fluids that have relatively low freezing points. And, while Saturn is the most well-known planet for having rings, Uranus has 13 known rings composed of ice and dust.
      Over the next six years, Uranus will occult several dimmer stars. NASA hopes to gather airborne and possibly space-based measurements of the next bright Uranus occultation in 2031, which will be of an even brighter star than the one observed in April.
      For more information on NASA’s Uranus Stellar Occultation Campaign 2025:
      https://science.larc.nasa.gov/URANUS2025
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Charles Hatfield
      Langley Research Center, Hampton, Virginia
      757-262-8289
      charles.g.hatfield@nasa.gov
      About the Author
      Charles G. Hatfield
      Science Public Affairs Officer, NASA Langley Research Center
      Share
      Details
      Last Updated Apr 22, 2025 Related Terms
      General Ice Giants Langley Research Center Planetary Science Division Uranus Explore More
      4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
      Article 7 hours ago 3 min read Celebrating Earth as Only NASA Can
      Article 1 day ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Have we ever been to Uranus?

      The answer is simple, yes, but only once. The Voyager II spacecraft flew by the planet Uranus back in 1986, during a golden era when the Voyager spacecraft explored all four giant planets of our solar system. It revealed an extreme world, a planet that had been bowled over onto its side by some extreme cataclysm early in the formation of the solar system.

      That means that its seasons and its magnetic field get exposed to the most dramatic seasonal variability of any place that we know of in the solar system. The atmosphere was a churning system made of methane and hydrogen and water, with methane clouds showing up as white against the bluer background of the planet itself.
      The densely packed ring system is host to a number of very fine, narrow and dusty rings surrounded by a collection of icy satellites. And those satellites may harbor deep, dark, hidden oceans beneath an icy crust of water ice.

      Taken together, this extreme and exciting system is somewhere that we simply must go back to explore and hopefully in the next one to two decades NASA and the European Space Agency will mount an ambitious mission to go out there and explore the Uranian system. It’s important not just for solar system science, but also for the growing field of exoplanet science. As planets of this particular size, the size of Uranus, about four times wider than planet Earth, seem to be commonplace throughout our galaxy.

      So how have we been to Uranus? Yes, but it’s time that we went back.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 10, 2025 Related Terms
      Science Mission Directorate Planetary Science Planetary Science Division Planets The Solar System Uranus Explore More
      6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
      Article 1 hour ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
      Article 19 hours ago 2 min read NASA’s Planetary Defenders Documentary Premieres April 16
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...