Members Can Post Anonymously On This Site
Expedition 71 Soyuz Landing
-
Similar Topics
-
By NASA
3 Min Read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
Better understanding the lunar lighting environment will help NASA prepare astronauts for the harsh environment Artemis III Moonwalkers will experience on their mission. NASA’s Artemis III mission will build on earlier test flights and add new capabilities with the human landing system and advanced spacesuits to send the first astronauts to explore the lunar South Pole and prepare humanity to go to Mars.
Using high-intensity lighting and low-fidelity mock-ups of a lunar lander, lunar surface, and lunar rocks, NASA engineers are simulating the Moon’s environment at the Flat Floor Facility to study and experience the extreme lighting condition. The facility is located at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
NASA engineers inside the Flat Floor Facility at Marshall Space Flight Center in Huntsville, Alabama, mimic lander inspection and assessment tasks future Artemis astronauts may do during Artemis III. Lights are positioned at a low angle to replicate the strong shadows that are cast across the lunar South Pole. NASA/Charles Beason “The goal is really to understand how shadows will affect lander visual inspection and assessment efforts throughout a future crewed mission,” said Emma Jaynes, test engineer at the facility. “Because the Flat Floor Facility is similar to an inverted air hockey table, NASA and our industry partners can rearrange large, heavy structures with ease – and inspect the shadows’ effects from multiple angles, helping to ensure mission success and astronaut safety for Artemis III.”
Data and analysis from testing at NASA are improving models Artemis astronauts will use in preparation for lander and surface operations on the Moon during Artemis III. The testing also is helping cross-agency teams evaluate various tools astronauts may use.
The 86-foot-long by 44-foot-wide facility at NASA is one of the largest, flattest, and most stable air-bearing floors in the world, allowing objects to move across the floor without friction on a cushion of air.
Test teams use large, 12-kilowatt and 6-kilowatt lights to replicate the low-angle, high contrast conditions of the lunar South Pole. Large swaths of fabric are placed on top of the epoxy floor to imitate the reflective properties of lunar regolith. All the mock-ups are placed on air bearings, allowing engineers to easily move and situate structures on the floor.
The Flat Floor Facility is an air-bearing floor, providing full-scale simulation capabilities for lunar surface systems by simulating zero gravity in two dimensions. Wearing low-fidelity materials, test engineers can understand how the extreme lighting of the Moon’s South Pole could affect surface operations during Artemis III. NASA/Charles Beason “The Sun is at a permanent low angle at the South Pole of the Moon, meaning astronauts will experience high contrasts between the lit and shadowed regions,” Jaynes said. “The color white can become blinding in direct sunlight, while the shadows behind a rock could stretch for feet and ones behind a lander could extend for miles.”
The laboratory is large enough for people to walk around and experience this phenomenon with the naked eye, adding insight to what NASA calls ‘human in-the-loop testing.
NASA is working with SpaceX to develop the company’s Starship Human Landing System to safely send Artemis astronauts to the Moon’s surface and back to lunar orbit for Artemis III.
Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
For more information about Artemis missions, visit:
https://www.nasa.gov/artemis
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jun 17, 2025 EditorLee MohonContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Human Landing System Program Artemis Artemis 3 General Humans in Space Marshall Space Flight Center Explore More
4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
Article 2 months ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
Article 2 months ago 4 min read NASA Marshall Thermal Engineering Lab Provides Key Insight to Human Landing System
Article 7 months ago Keep Exploring Discover More Topics From NASA
Artemis III
Gateway Lunar Space Station
Built with international and industry partners, Gateway will be humanity’s first space station around the Moon. It will support a…
Space Launch System (SLS)
Humans In Space
View the full article
-
By NASA
On May 22, 2025, NASA hosted an Expedition 72 crew debrief and awards ceremony at Space Center Houston, where more than 1,000 attendees gathered to celebrate. The event recognized the achievements of the crew as well as NASA employees and partners whose dedication and support contributed to the expedition’s success. Crew members from Expedition 72 shared reflections and anecdotes from their time on the International Space Station and expressed gratitude for the opportunity to contribute to scientific research aboard the orbiting laboratory.
A group photo of participants from the Expedition 72 crew debrief and awards ceremony on May 22, 2025, at Space Center Houston’s IMAX theater. NASA/James Blair The event included four NASA astronauts:
Nick Hague, Crew-9 commander and Expedition 72 flight engineer Butch Wilmore, Boeing Starliner commander and Expedition 72 flight engineer Suni Williams, Boeing Starliner pilot and Expedition 72 commander Don Pettit, Soyuz MS-26 and Expedition 72 flight engineer The Expedition 72 crew also included Roscosmos cosmonauts Aleksandr Gorbunov, Aleksey Ovchinin, and Ivan Vagner, who were not in attendance. The cosmonauts served as Crew-9 mission specialist, Soyuz-MS commander, and Soyuz-MS flight engineer, respectively.
NASA astronaut Matt Dominick kicked off the event by striking the ceremonial bell, a tradition symbolizing the end of the mission for the crew and those that support them.
Johnson Space Center Acting Director Stephen Koerner recognized the crew’s commitment to the mission and their role in the advancement of human spaceflight. “These brave men and women make the tough yet rewarding choice to embark on long-duration missions away from their family and friends,” he said. “They do this to conduct groundbreaking research and inspire generations. Spaceflight is hard, but through togetherness we make giant leaps, going further than ever before.”
NASA astronauts (from left) Don Pettit and Butch Wilmore, Expedition 72 flight engineers, pack external research hardware which housed a variety of samples exposed to the vacuum of space such as polymers, photovoltaic devices, and more. The samples were returned to Earth to be examined to understand how space radiation, the extreme thermal environment, micrometeoroids, and more affect materials possibly benefitting the space industry. NASA NASA astronauts Nick Hague and Suni Williams, Expedition 72 Flight Engineer and Commander respectively, discuss orbital lab maintenance procedures aboard the International Space Station.NASA The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the International Space Station. Their work included enhancing metal 3D printing capabilities in orbit, exploring the potential of stem cell technology for treating diseases, preparing the first wooden satellite for deployment, and collecting samples from the station’s exterior to examine whether microorganisms can survive in the harsh environment of space. They also conducted studies on plant growth and quality, investigated how fire behaves in microgravity, and advanced life support systems, all aimed at improving the health, safety, and sustainability of future space missions.
Pettit also used his spare time and surroundings aboard the station to conduct unique experiments and captivate the public with his photography. Expedition 72 captured a record 1 million photos during the mission, showcasing the unique research and views aboard the orbiting laboratory through astronauts’ eyes.
The expedition was a historic venture, with Williams and Wilmore launching aboard Boeing’s Starliner spacecraft as part of NASA’s Boeing Crew Flight Test before being integrated with the Expedition 71/72 crew and returning on NASA’s SpaceX Crew-9. While working aboard the orbiting laboratory, Williams established a new record for the most cumulative spacewalking time by a woman — 62 hours and 6 minutes — placing her fourth among the most experienced spacewalkers in history. Additionally, Expedition 72 saw the first reboost of the International Space Station by a Dragon spacecraft.
The crew participated in a panel discussion, sharing further details about the expedition including experiments conducted, favorite foods, and experiencing the Aurora Borealis. The conversation closed with a special patch presentation from Wilmore to Williams to highlight her achievement of exceeding Mach 25 in the Boeing Starliner spacecraft.
Following the panel, an award ceremony recognized team members for their efforts in supporting the mission, with recipients including the crew, NASA employees, and commercial partners.
The Expedition 72 crew poses for a portrait inside the International Space Station’s Harmony module with a cake commemorating a total of 3,000 cumulative days in space gained between the individual crew members. Front row (from left): Roscosmos cosmonaut Ivan Vagner, NASA astronaut Nick Hague, and Roscosmos cosmonaut Aleksandr Gorbunov. Back row (from left): NASA astronauts Butch Wilmore and Don Pettit, Roscosmos cosmonaut Alexey Ovchinin, and NASA astronaut Suni Williams.NASA Flight Operations Directorate Acting Director Kjell Lindgren discussed the impact of collaboration with commercial and international partners. “Your collaboration is vital not just to mission success but to the very identity of this program,” he said. “Together, we can demonstrate what global collaboration can achieve in pursuit of excellence and exploration.”
Watch below to recap the Expedition 72 crew members’ journey aboard the International Space Station and to celebrate those who helped make the mission a success.
Explore More
4 min read NASA Student Challenge Prepares Future Designers for Lunar Missions
Article 1 day ago 4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts
Article 1 day ago 2 min read NASA Provides Hardware for Space Station DNA Repair Experiment
Article 5 days ago View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Advancing new hazard detection and precision landing technologies to help future space missions successfully achieve safe and soft landings is a critical area of space research and development, particularly for future crewed missions. To support this, NASA’s Space Technology Mission Directorate (STMD) is pursuing a regular cadence of flight testing on a variety of vehicles, helping researchers rapidly advance these critical systems for missions to the Moon, Mars, and beyond.
“These flight tests directly address some of NASA’s highest-ranked technology needs, or shortfalls, ranging from advanced guidance algorithms and terrain-relative navigation to lidar-and optical-based hazard detection and mapping,” said Dr. John M. Carson III, STMD technical integration manager for precision landing and based at NASA’s Johnson Space Center in Houston.
Since the beginning of this year, STMD has supported flight testing of four precision landing and hazard detection technologies from many sectors, including NASA, universities, and commercial industry. These cutting-edge solutions have flown aboard a suborbital rocket system, a high-speed jet, a helicopter, and a rocket-powered lander testbed. That’s four precision landing technologies tested on four different flight vehicles in four months.
“By flight testing these technologies on Earth in spaceflight-relevant trajectories and velocities, we’re demonstrating their capabilities and validating them with real data for transitioning technologies from the lab into mission applications,” said Dr. Carson. “This work also signals to industry and other partners that these capabilities are ready to push beyond NASA and academia and into the next generation of Moon and Mars landers.”
The following NASA-supported flight tests took place between February and May:
Suborbital Rocket Test of Vision-Based Navigation System
Identifying landmarks to calculate accurate navigation solutions is a key function of Draper’s Multi-Environment Navigator (DMEN), a vision-based navigation and hazard detection technology designed to improve safety and precision of lunar landings.
Aboard Blue Origin’s New Shepard reusable suborbital rocket system, DMEN collected real-world data and validated its algorithms to advance it for use during the delivery of three NASA payloads as part of NASA’s Commercial Lunar Payload Services (CLPS) initiative. On Feb. 4, DMEN performed the latest in a series of tests supported by NASA’s Flight Opportunities program, which is managed at NASA’s Armstrong Flight Research Center in Edwards, California.
During the February flight, which enabled testing at rocket speeds on ascent and descent, DMEN scanned the Earth below, identifying landmarks to calculate an accurate navigation solution. The technology achieved accuracy levels that helped Draper advance it for use in terrain-relative navigation, which is a key element of landing on other planets.
New Shepard booster lands during the flight test on February 4, 2025.Blue Origin High-Speed Jet Tests of Lidar-Based Navigation
Several highly dynamic maneuvers and flight paths put Psionic’s Space Navigation Doppler Lidar (PSNDL) to the test while it collected navigation data at various altitudes, velocities, and orientations.
Psionic licensed NASA’s Navigation Doppler Lidar technology developed at Langley Research Center in Hampton, Virginia, and created its own miniaturized system with improved functionality and component redundancies, making it more rugged for spaceflight. In February, PSNDL along with a full navigation sensor suite was mounted aboard an F/A-18 Hornet aircraft and underwent flight testing at NASA Armstrong.
The aircraft followed a variety of flight paths over several days, including a large figure-eight loop and several highly dynamic maneuvers over Death Valley, California. During these flights, PSNDL collected navigation data relevant for lunar and Mars entry and descent.
The high-speed flight tests demonstrated the sensor’s accuracy and navigation precision in challenging conditions, helping prepare the technology to land robots and astronauts on the Moon and Mars. These recent tests complemented previous Flight Opportunities-supported testing aboard a lander testbed to advance earlier versions of their PSNDL prototypes.
The Psionic Space Navigation Doppler Lidar (PSNDL) system is installed in a pod located under the right wing of a NASA F/A-18 research aircraft for flight testing above Death Valley near NASA’s Armstrong Flight Research Center in Edwards, California, in February 2025.NASA Helicopter Tests of Real-Time Mapping Lidar
Researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, developed a state-of-the-art Hazard Detection Lidar (HDL) sensor system to quickly map the surface from a vehicle descending at high speed to find safe landing sites in challenging locations, such as Europa (one of Jupiter’s moons), our own Moon, Mars, and other planetary bodies throughout the solar system. The HDL-scanning lidar generates three-dimensional digital elevation maps in real time, processing approximately 15 million laser measurements and mapping two football fields’ worth of terrain in only two seconds.
In mid-March, researchers tested the HDL from a helicopter at NASA’s Kennedy Space Center in Florida, with flights over a lunar-like test field with rocks and craters. The HDL collected numerous scans from several different altitudes and view angles to simulate a range of landing scenarios, generating real-time maps. Preliminary reviews of the data show excellent performance of the HDL system.
The HDL is a component of NASA’s Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE) technology suite. The SPLICE descent and landing system integrates multiple component technologies, such as avionics, sensors, and algorithms, to enable landing in hard-to-reach areas of high scientific interest. The HDL team is also continuing to test and further improve the sensor for future flight opportunities and commercial applications.
NASA’s Hazard Detection Lidar field test team at Kennedy Space Center’s Shuttle Landing Facility in Florida in March 2025. Lander Tests of Powered-Descent Guidance Software
Providing pinpoint landing guidance capability with minimum propellant usage, the San Diego State University (SDSU) powered-descent guidance algorithms seek to improve autonomous spacecraft precision landing and hazard avoidance. During a series of flight tests in April and May, supported by NASA’s Flight Opportunities program, the university’s software was integrated into Astrobotic’s Xodiac suborbital rocket-powered lander via hardware developed by Falcon ExoDynamics as part of NASA TechLeap Prize’s Nighttime Precision Landing Challenge.
The SDSU algorithms aim to improve landing capabilities by expanding the flexibility and trajectory-shaping ability and enhancing the propellant efficiency of powered-descent guidance systems. They have the potential for infusion into human and robotic missions to the Moon as well as high-mass Mars missions.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
As part of a series of tethered and free-flight tests in April and May 2025, algorithms developed by San Diego State University guided the descent of the Xodiac lander testbed vehicle.Astrobotic By advancing these and other important navigation, precision landing, and hazard detection technologies with frequent flight tests, NASA’s Space Technology Mission Directorate is prioritizing safe and successful touchdowns in challenging planetary environments for future space missions.
Learn more: https://www.nasa.gov/space-technology-mission-directorate/
By: Lee Ann Obringer
NASA’s Flight Opportunities program
Facebook logo @NASATechnology @NASA_Technology Explore More
2 min read NASA Langley Uses Height, Gravity to Test Long, Flexible Booms
Article 4 hours ago 3 min read Autonomous Tritium Micropowered Sensors
Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
Article 2 days ago Keep Exploring Discover More …
Space Technology Mission Directorate
Flight Opportunities
Moon
These two printable STL files demonstrate the differences between the near and far side of Earth’s Moon. The near side…
Technology
Share
Details
Last Updated May 29, 2025 EditorLoura Hall Related Terms
Space Technology Mission Directorate Armstrong Flight Research Center Flight Opportunities Program Technology Technology for Space Travel View the full article
-
By European Space Agency
The next time astronauts land on the Moon, we will watch it in high-definition. The transmission will be in colour, digital and at up to 60 frames per second.
View the full article
-
By NASA
NASA astronauts Butch Wilmore, Suni Williams, Nick Hague, and Don Pettit show off their ‘Proud to be American’ socks in a photo taken aboard the International Space Station. Photo Credit: NASA Four NASA astronauts will participate in a welcome home ceremony at Space Center Houston after recently returning from missions aboard the International Space Station.
NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Don Pettit will share highlights from their missions at 6 p.m. CDT Thursday, May 22, during a free, public event at NASA Johnson Space Center’s visitor center. The astronauts also will recognize key mission contributors during an awards ceremony after their presentation.
Williams and Wilmore launched aboard Boeing’s Starliner spacecraft and United Launch Alliance Atlas V rocket on June 5, 2024, from Space Launch Complex 41 as part of NASA’s Boeing Crew Flight Test. The duo arrived at the space station on June 6. In August, NASA announced the uncrewed return of Starliner to Earth and integrated Wilmore and Williams with the Expedition 71/72 crew and a return on Crew-9.
Hague launched Sept. 28, 2024, with Roscosmos cosmonaut Aleksandr Gorbunov aboard a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida as part of NASA’s SpaceX Crew-9 mission. The next day, they docked to the forward-facing port of the station’s Harmony module.
Hague, Gorbunov, Wilmore, and Williams returned to Earth on March 18, 2025, splashing down safely off the coast of Tallahassee, Florida, in the Gulf of America.
Williams and Wilmore traveled 121,347,491 miles during their mission, spent 286 days in space, and completed 4,576 orbits around Earth. Hague and Gorbunov traveled 72,553,920 miles during their mission, spent 171 days in space, and completed 2,736 orbits around Earth. Hague has logged 374 days in space during two missions. It was the third spaceflight for both Williams and Wilmore. Williams has logged 608 total days in space, and Wilmore has logged 464 days.
Pettit launched aboard the Soyuz MS-26 spacecraft on Sept. 11, 2024, alongside Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner. The seven-month research mission as an Expedition 72 flight engineer was the fourth spaceflight of Pettit’s career, completing 3,520 orbits of the Earth and a journey of 93.3 million miles. He has logged a total of 590 days in orbit. Pettit and his crewmembers safely landed in Kazakhstan on April 19, 2025 (April 20, 2025, Kazakhstan time).
The Expedition 72 crew dedicated more than 1,000 combined hours to scientific research and technology demonstrations aboard the International Space Station. Their work included enhancing metal 3D printing capabilities in orbit, exploring the potential of stem cell technology for treating diseases, preparing the first wooden satellite for deployment, and collecting samples from the station’s exterior to examine whether microorganisms can survive in the harsh environment of space. They also conducted studies on plant growth and quality, investigated how fire behaves in microgravity, and advanced life support systems, all aimed at improving the health, safety, and sustainability of future space missions. Pettit also used his spare time and surroundings aboard station to conduct unique experiments and captivate the public with his photography. Expedition 72 captured a record one million photos during the mission, showcasing the unique research and views aboard the orbiting laboratory through astronauts’ eyes.
For more than 24 years, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and conducting critical research for the benefit of humanity and our home planet. Space station research supports the future of human spaceflight as NASA looks toward deep space missions to the Moon under the Artemis campaign and in preparation for future human missions to Mars, as well as expanding commercial opportunities in low Earth orbit and beyond.
Learn more about the International Space Station at:
https://www.nasa.gov/station
-end-
Jaden Jennings
Johnson Space Center, Houston
713-281-0984
jaden.r.jennings@nasa.gov
Dana Davis
Johnson Space Center, Houston
281-244-0933
dana.l.davis@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.