Members Can Post Anonymously On This Site
Measuring Moon Dust to Fight Air Pollution
-
Similar Topics
-
By NASA
NASA’s Artemis II SLS (Space Launch System) rocket poised to send four astronauts from Earth on a journey around the Moon next year may appear identical to the Artemis I SLS rocket. On closer inspection, though, engineers have upgraded the agency’s Moon rocket inside and out to improve performance, reliability, and safety.
SLS flew a picture perfect first mission on the Artemis I test flight, meeting or exceeding parameters for performance, attitude control, and structural stability to an accuracy of tenths or hundredths of a percent as it sent an uncrewed Orion thousands of miles beyond the Moon. It also returned volumes of invaluable flight data for SLS engineers to analyze to drive improvements.
Teams with NASA’s Exploration Ground Systems integrate the SLS (Space Launch System) Moon rocket with the solid rocket boosters onto mobile launcher 1 inside High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in March 2025. Artemis II is the first crewed test flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.NASA/Frank Michaux For Artemis II, the major sections of SLS remain unchanged – a central core stage, four RS-25 main engines, two five-segment solid rocket boosters, the ICPS (interim cryogenic propulsion stage), a launch vehicle stage adapter to hold the ICPS, and an Orion stage adapter connecting SLS to the Orion spacecraft. The difference is in the details.
“While we’re proud of our Artemis I performance, which validated our overall design, we’ve looked at how SLS can give our crews a better ride,” said John Honeycutt, NASA’s SLS Program manager. “Some of our changes respond to specific Artemis II mission requirements while others reflect ongoing analysis and testing, as well as lessons learned from Artemis I.”
Engineers have outfitted the ICPS with optical targets that will serve as visual cues to the astronauts aboard Orion as they manually pilot Orion around the upper stage and practice maneuvers to inform docking operations for Artemis III.
The Artemis II rocket includes an improved navigation system compared to Artemis I. Its communications capability also has been improved by repositioning antennas on the rocket to ensure continuous communications with NASA ground stations and the U.S. Space Force’s Space Launch Delta 45 which controls launches along the Eastern Range.
An emergency detection system on the ICPS allows the rocket to sense and respond to problems and notify the crew. The flight safety system adds a time delay to the self-destruct system to allow time for Orion’s escape system to pull the capsule to safety in event of an abort.
The separation motors that push the solid rocket booster away after the elements are no longer needed were angled an additional 15 degrees to increase separation clearance as the rest of the rocket speeds by.
Additionally, SLS will jettison the spent boosters four seconds earlier during Artemis II ascent than occurred during Artemis I. Dropping the boosters several seconds closer to the end of their burn will give engineers flight data to correlate with projections that shedding the boosters several seconds sooner will yield approximately 1,600 pounds of payload to Earth orbit for future SLS flights.
Engineers have incorporated additional improvements based on lessons learned from Artemis I. During the Artemis I test flight the SLS rocket experienced higher-than-expected vibrations near the solid rocket booster attachment points that was caused by unsteady airflow.
To steady the airflow, a pair of six-foot-long strakes flanking each booster’s forward connection points on the SLS intertank will smooth vibrations induced by airflow during ascent, and the rocket’s electronics system was requalified to endure higher levels of vibrations.
Engineers updated the core stage power distribution control unit, mounted in the intertank, which controls power to the rocket’s other electronics and protects against electrical hazards.
These improvements have led to an enhanced rocket to support crew as part of NASA’s Golden Age of innovation and exploration.
The approximately 10-day Artemis II test flight is the first crewed flight under NASA’s Artemis campaign. It is another step toward new U.S.-crewed missions on the Moon’s surface that will help the agency prepare to send the first astronauts – Americans – to Mars.
https://www.nasa.gov/artemis
News Media Contact
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256.631.9126
jonathan.e.deal@nasa.gov
Share
Details
Last Updated Sep 17, 2025 EditorLee MohonContactJonathan DealLocationMarshall Space Flight Center Related Terms
Space Launch System (SLS) Artemis Artemis 2 Exploration Ground Systems Marshall Space Flight Center Explore More
2 min read NASA Makes Webby 30s List of Most Iconic, Influential on Internet
Article 1 day ago 6 min read Artemis II Crew to Advance Human Spaceflight Research
Article 5 days ago 9 min read Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research
Article 6 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA’s Nancy Grace Roman Space Telescope will help scientists better understand our Milky Way galaxy’s less sparkly components — gas and dust strewn between stars, known as the interstellar medium.
One of Roman’s major observing programs, called the Galactic Plane Survey, will peer through our galaxy to its most distant edge, mapping roughly 20 billion stars—about four times more than have currently been mapped. Scientists will use data from these stars to study and map the dust their light travels through, contributing to the most complete picture yet of the Milky Way’s structure, star formation, and the origins of our solar system.
Our Milky Way galaxy is home to more than 100 billion stars that are often separated by trillions of miles. The spaces in between, called the interstellar medium, aren’t empty — they’re sprinkled with gas and dust that are both the seeds of new stars and the leftover crumbs from stars long dead. Studying the interstellar medium with observatories like NASA’s upcoming Nancy Grace Roman Space Telescope will reveal new insight into the galactic dust recycling system.
Credit: NASA/Laine Havens; Music credit: Building Heroes by Enrico Cacace [BMI], Universal Production Music “With Roman, we’ll be able to turn existing artist’s conceptions of the Milky Way into more data-driven models using new constraints on the 3D distribution of interstellar dust,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.
Solving Milky Way mystery
Scientists know how our galaxy likely looks by combining observations of the Milky Way and other spiral galaxies. But dust clouds make it hard to work out the details on the opposite side of our galaxy. Imagine trying to map a neighborhood while looking through the windows of a house surrounded by a dense fog.
Roman will see through the “fog” of dust using a specialized camera and filters that observe infrared light — light with longer wavelengths than our eyes can detect. Infrared light is more likely to pass through dust clouds without scattering.
This artist’s concept visualizes different types of light moving through a cloud of particles. Since infrared light has a longer wavelength, it can pass more easily through the dust. That means astronomers observing in infrared light can peer deeper into dusty regions.Credit: NASA’s Goddard Space Flight Center Light with shorter wavelengths, including blue light produced by stars, more easily scatters. That means stars shining through dust appear dimmer and redder than they actually are.
By comparing the observations with information on the source star’s characteristics, astronomers can disentangle the star’s distance from how much its colors have been reddened. Studying those effects reveals clues about the dust’s properties.
“I can ask, ‘how much redder and dimmer is the starlight that Roman detects at different wavelengths?’ Then, I can take that information and relate it back to the properties of the dust grains themselves, and in particular their size,” said Brandon Hensley, a scientist who studies interstellar dust at NASA’s Jet Propulsion Laboratory in Southern California.
Scientists will also learn about the dust’s composition and probe clouds to investigate the physical processes behind changing dust properties.
Clues in dust-influenced starlight hint at the amount of dust between us and a star. Piecing together results from many stars allows astronomers to construct detailed 3D dust maps. That would enable scientists like Zucker to create a model of the Milky Way, which will show us how it looks from the outside. Then scientists can better compare the Milky Way with other galaxies that we only observe from the outside, slotting it into a cosmological perspective of galaxy evolution.
“Roman will add a whole new dimension to our understanding of the galaxy because we’ll see billions and billions more stars,” Zucker said. “Once we observe the stars, we’ll have the dust data as well because its effects are encoded in every star Roman detects.”
Galactic life cycles
The interstellar medium does more than mill about the Milky Way — it fuels star and planet formation. Dense blobs of interstellar medium form molecular clouds, which can gravitationally collapse and kick off the first stages of star development. Young stars eject hot winds that can cause surrounding dust to clump into planetary building blocks.
“Dust carries a lot of information about our origins and how everything came to be,” said Josh Peek, an associate astronomer and head of the data science mission office at the Space Telescope Science Institute in Baltimore, Maryland. “Right now, we’re basically standing on a really large dust grain — Earth was built out of lots and lots of really tiny grains that grew together into a giant ball.”
Roman will identify young clusters of stars in new, distant star-forming regions as well as contribute data on “star factories” previously identified by missions like NASA’s retired Spitzer Space Telescope.
“If you want to understand star formation in different environments, you have to understand the interstellar landscape that seeds it,” Zucker said. “Roman will allow us to link the 3D structure of the interstellar medium with the 3D distribution of young stars across the galaxy’s disk.”
Roman’s new 3D dust maps will refine our understanding of the Milky Way’s spiral structure, the pinwheel-like pattern where stars, gas, and dust bunch up like galactic traffic jams. By combining velocity data with dust maps, scientists will compare observations with predictions from models to help identify the cause of spiral structure—currently unclear.
The role that this spiral pattern plays in star formation remains similarly uncertain. Some theories suggest that galactic congestion triggers star formation, while others contend that these traffic jams gather material but do not stimulate star birth.
Roman will help to solve mysteries like these by providing more data on dusty regions across the entire Milky Way. That will enable scientists to compare many galactic environments and study star birth in specific structures, like the galaxy’s winding spiral arms or its central stellar bar.
NASA’s Nancy Grace Roman Space Telescope will conduct a Galactic Plane Survey to explore our home galaxy, the Milky Way. The survey will map around 20 billion stars, each encoding information about intervening dust and gas called the interstellar medium. Studying the interstellar medium could offer clues about our galaxy’s spiral arms, galactic recycling, and much more.
Credit: NASA, STScI, Caltech/IPAC The astronomy community is currently in the final stages of planning for Roman’s Galactic Plane Survey.
“With Roman’s massive survey of the galactic plane, we’ll be able to have this deep technical understanding of our galaxy,” Peek said.
After processing, Roman’s data will be available to the public online via the Roman Research Nexus and the Barbara A. Mikulski Archive for Space Telescopes, which will each provide open access to the data for years to come.
“People who aren’t born yet are going to be able to do really cool analyses of this data,” Peek said. “We have a really beautiful piece of our heritage to hand down to future generations and to celebrate.”
Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
Download additional images and video from NASA’s Scientific Visualization Studio.
For more information about the Roman Space Telescope, visit:
https://www.nasa.gov/roman
By Laine Havens
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Sep 16, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Galaxies Protostars Stars The Milky Way Explore More
5 min read NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side
Article 2 years ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 5 months ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
Article 2 months ago View the full article
-
By NASA
3 min read
Weird Ways to Observe the Moon
Sun Funnels in action! Starting clockwise from the bottom left, a standalone Sun Funnel; attached to a small refractor to observe the transit of Mercury in 2019; attached to a large telescope in preparation for evening lunar observing; projection of the Moon on a funnel from a medium-size scope (5 inches). Night Sky Network International Observe the Moon Night is on October 4, 2025, this year– but you can observe the Moon whenever it’s up, day or night! While binoculars and telescopes certainly reveal incredible details of our neighbor’s surface, bringing out dark seas, bright craters, and numerous odd fissures and cracks, these tools are not the only way to observe details about our Moon. There are more ways to observe the Moon than you might expect, just using common household materials.
Put on a pair of sunglasses, especially polarized sunglasses! You may think this is a joke, but the point of polarized sunglasses is to dramatically reduce glare, and so they allow your eyes to pick out some lunar details! Surprisingly, wearing sunglasses even helps during daytime observations of the Moon.
One unlikely tool is the humble plastic bottle cap! John Goss from the Roanoke Valley Astronomical Society shared these directions on how to make your own bottle cap lunar viewer, which was suggested to him by Fred Schaaf many years ago as a way to also view the thin crescent of Venus when close to the Sun:
“The full Moon is very bright, so much that details are overwhelmed by the glare. Here is an easy way to see more! Start by drilling a 1/16-inch (1.5 mm) diameter hole in a plastic soft drink bottle cap. Make sure it is an unobstructed, round hole. Now look through the hole at the bright Moon. The image brightness will be much dimmer than normal – over 90% dimmer – reducing or eliminating any lunar glare. The image should also be much sharper because the bottle cap blocks light from entering the outer portion of your pupil, where imperfections of the eye’s curving optical path likely lie.” Many report seeing a startling amount of lunar detail!
You can project the Moon! Have you heard of a “Sun Funnel”? It’s a way to safely view the Sun by projecting the image from an eyepiece to fabric stretched across a funnel mounted on top. It’s easy to make at home, too – directions are here: bit.ly/sunfunnel. Depending on your equipment, a Sun Funnel can view the Moon as well as the Sun– a full Moon gives off more than enough light to project from even relatively small telescopes. Large telescopes will project the full Moon and its phases with varying levels of detail; while not as crisp as direct eyepiece viewing, it’s still an impressive sight! You can also mount your smartphone or tablet to your eyepiece for a similar Moon-viewing experience, but the funnel doesn’t need batteries.
Of course, you can join folks in person or online to celebrate our Moon on October 4, 2025, with International Observe the Moon Night – find details at moon.nasa.gov/observe.
Originally posted by Dave Prosper: September 2021
Last Updated by Kat Troche: March 2025
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.