Jump to content

8 Things to Know About NASA’s Mission to an Ocean Moon of Jupiter


Recommended Posts

  • Publishers
Posted

6 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter
This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch.
NASA/JPL-Caltech

The first NASA spacecraft dedicated to studying an ocean world beyond Earth, Europa Clipper aims to find out if the ice-encased moon Europa could be habitable.

NASA’s Europa Clipper spacecraft, the largest the agency has ever built for a planetary mission, will travel 1.8 billion miles (2.9 billion kilometers) from the agency’s Kennedy Space Center in Florida to Europa, an intriguing icy moon of Jupiter. The spacecraft’s launch period opens Thursday, Oct. 10.

Learn more about how NASA’s Europa Clipper came together – and how it will explore an ocean moon of Jupiter. Credit: NASA/JPL-Caltech 

Data from previous NASA missions has provided scientists with strong evidence that an enormous salty ocean lies underneath the frozen surface of the moon. Europa Clipper will orbit Jupiter and conduct 49 close flybys of the moon to gather data needed to determine whether there are places below its thick frozen crust that could support life.

Here are eight things to know about the mission:

1. Europa is one of the most promising places to look for currently habitable conditions beyond Earth.

There’s scientific evidence that the ingredients for life — water, the right chemistry, and energy — may exist at Europa right now. This mission will gather the information scientists need to find out for sure. The moon may hold an internal ocean with twice the water of Earth’s oceans combined, and it may also host organic compounds and energy sources under its surface. If the mission determines that Europa is habitable, it would mean there may be more habitable worlds in our solar system and beyond than we have imagined.

2. The spacecraft will fly through one of the most punishing radiation environments in our solar system — second only to the Sun’s.

Jupiter is surrounded by a gigantic magnetic field 20,000 times stronger than Earth’s. As the field spins, it captures and accelerates charged particles, creating radiation that can damage spacecraft. Mission engineers designed a spacecraft vault to shield sensitive electronics from radiation, and they plotted orbits that will limit the time Europa Clipper spends in most radiation-heavy areas around Jupiter.

3. Europa Clipper will orbit Jupiter, studying Europa while flying by the moon dozens of times.

The spacecraft will make looping orbits around Jupiter that bring it close to Europa for 49 science-dedicated flybys. On each orbit, the spacecraft will spend less than a day in Jupiter’s dangerous radiation zone near Europa before zipping back out. Two to three weeks later, it will repeat the process, making another flyby.

4. Europa Clipper features NASA’s most sophisticated suite of science instruments yet.

To determine if Europa is habitable, Europa Clipper must assess the moon’s interior, composition, and geology. The spacecraft carries nine science instruments and a gravity experiment that uses the telecommunications system. In order to obtain the best science during each flyby, all the science instruments will operate simultaneously on every pass. Scientists will then layer the data together to paint a full picture of the moon.

5. With antennas and solar arrays fully deployed, Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission.

The spacecraft extends 100 feet (30.5 meters) from one end to the other and about 58 feet (17.6 meters) across. That’s bigger than a basketball court, thanks in large part to the solar arrays, which need to be huge so they can collect enough sunlight while near Jupiter to power the instruments, electronics, and other subsystems.

6. It’s a long journey to Jupiter.

Jupiter is on average some 480 million miles (about 770 million kilometers) from Earth; both planets are in motion, and a spacecraft can carry only a limited amount of fuel. Mission planners are sending Europa Clipper past Mars and then Earth, using the planets’ gravity as a slingshot to add speed to the spacecraft’s trek. After journeying about 1.8 billion miles (2.9 billion kilometers) over 5½ years, the spacecraft will fire its engines to enter orbit around Jupiter in 2030.

7. Institutions across the U.S. and Europe have contributed to Europa Clipper.

Currently, about a thousand people work on the mission, including more than 220 scientists from both the U.S. and Europe. Since the mission was officially approved in 2015, more than 4,000 people have contributed to Europa Clipper, including teams who work for contractors and subcontractors.

8. More than 2.6 million of us are riding along with the spacecraft, bringing greetings from one water world to another.

As part of a mission campaign called “Message in a Bottle,” the spacecraft is carrying a poem by U.S. Poet Laureate Ada Limón, cosigned by millions of people from nearly every country in the world. Their names have been stenciled onto a microchip attached to a tantalum metal plate that seals the spacecraft’s electronics vault. The plate also features waveforms of people saying the word “water” in over 100 spoken languages.

More About Europa Clipper

Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.

NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.

Find more information about Europa here:

https://europa.nasa.gov

News Media Contacts

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
gretchen.p.mccartney@jpl.nasa.gov

Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov

2024-125

Share

Details

Last Updated
Sep 17, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept shows the Moon’s hot interior and volcanism about 2 to 3 billion years ago. It is thought that volcanic activity on the lunar near side (the side facing Earth) helped create a landscape dominated by vast plains called mare, which are formed by molten rock that cooled and solidified. NASA/JPL-Caltech Analyzing gravity data collected by spacecraft orbiting other worlds reveals groundbreaking insights about planetary structures without having to land on the surface.
      Although the Moon and the asteroid Vesta are very different, two NASA studies use the same technique to reveal new details about the interiors of both.
      In the lunar study, published May 14 in the journal Nature, researchers developed a new gravity model of the Moon that includes tiny variations in the celestial body’s gravity during its elliptical orbit around Earth. These fluctuations cause the Moon to flex slightly due to Earth’s tidal force — a process called tidal deformation — which provides critical insights into the Moon’s deep internal structure.
      Using their model, the researchers produced the most detailed lunar gravitational map yet, providing future missions an improved way to calculate location and time on the Moon. They accomplished this by analyzing data on the motion of NASA’s GRAIL (Gravity Recovery and Interior Laboratory) mission, whose spacecraft, Ebb and Flow, orbited the Moon from Dec. 31, 2011, to Dec. 17, 2012.
      These views of the Moon’s near side, left, and far side were put together from observations made by NASA’s Lunar Reconnaissance Orbiter. NASA/JPL-Caltech In a second study, published in the journal Nature Astronomy on April 23, the researchers focused on Vesta, an object in the main asteroid belt between Mars and Jupiter. Using NASA’s Deep Space Network radiometric data and imaging data from the agency’s Dawn spacecraft, which orbited the asteroid from July 16, 2011, to Sept. 5, 2012, they found that instead of having distinct layers as expected, Vesta’s internal structure may be mostly uniform, with a very small iron core or no core at all.
      “Gravity is a unique and fundamental property of a planetary body that can be used to explore its deep interior,” said Park. “Our technique doesn’t need data from the surface; we just need to track the motion of the spacecraft very precisely to get a global view of what’s inside.”
      Lunar Asymmetry
      The lunar study looked at gravitational changes to the Moon’s near and far sides. While the near side is dominated by vast plains — known as mare — formed by molten rock that cooled and solidified billions of years ago, the far side is more rugged, with few plains.
      NASA’s Dawn mission obtained this image of the giant asteroid Vesta on July 24, 2011. The spacecraft spent 14 months orbiting the asteroid, capturing more than 30,000 images and fully mapping its surface. NASA/JPL-Caltech/UCLA/MPS/DLR/IDA Both studies were led by Ryan Park, supervisor of the Solar System Dynamics Group at NASA’s Jet Propulsion Laboratory in Southern California, and were years in the making due to their complexity. The team used NASA supercomputers to build a detailed map of how gravity varies across each body. From that, they could better understand what the Moon and Vesta are made of and how planetary bodies across the solar system formed.
      Some theories suggest intense volcanism on the near side likely caused these differences. That process would have caused radioactive, heat-generating elements to accumulate deep inside the near side’s mantle, and the new study offers the strongest evidence yet that this is likely the case.
      “We found that the Moon’s near side is flexing more than the far side, meaning there’s something fundamentally different about the internal structure of the Moon’s near side compared to its far side,” said Park. “When we first analyzed the data, we were so surprised by the result we didn’t believe it. So we ran the calculations many times to verify the findings. In all, this is a decade of work.”
      When comparing their results with other models, Park’s team found a small but greater-than-expected difference in how much the two hemispheres deform. The most likely explanation is that the near side has a warm mantle region, indicating the presence of heat-generating radioactive elements, which is evidence for volcanic activity that shaped the Moon’s near side 2 billion to 3 billion years ago.
      Vesta’s Evolution
      Park’s team applied a similar approach for their study that focused on Vesta’s rotational properties to learn more about its interior.  
      “Our technique is sensitive to any changes in the gravitational field of a body in space, whether that gravitational field changes over time, like the tidal flexing of the Moon, or through space, like a wobbling asteroid,” said Park. “Vesta wobbles as it spins, so we could measure its moment of inertia, a characteristic that is highly sensitive to the internal structure of the asteroid.”
      Changes in inertia can be seen when an ice skater spins with their arms held outward. As they pull their arms in, bringing more mass toward their center of gravity, their inertia decreases and their spin speeds up. By measuring Vesta’s inertia, scientists can gain a detailed understanding of the distribution of mass inside the asteroid: If its inertia is low, there would be a concentration of mass toward its center; if it’s high, the mass would be more evenly distributed.
      Some theories suggest that over a long period, Vesta gradually formed onion-like layers and a dense core. But the new inertia measurement from Park’s team suggests instead that Vesta is far more homogeneous, with its mass distributed evenly throughout and only a small core of dense material, or no core.
      Gravity slowly pulls the heaviest elements to a planet’s center over time, which is how Earth ended up with a dense core of liquid iron. While Vesta has long been considered a differentiated asteroid, a more homogenous structure would suggest that it may not have fully formed layers or may have formed from the debris of another planetary body after a massive impact.
      In 2016, Park used the same data types as the Vesta study to focus on Dawn’s second target, the dwarf planet Ceres, and results suggested a partially differentiated interior.
      Park and his team recently applied a similar technique to Jupiter’s volcanic moon Io, using data acquired by NASA’s Juno and Galileo spacecraft during their flybys of the Jovian satellite as well as from ground-based observations. By measuring how Io’s gravity changes as it orbits Jupiter, which exerts a powerful tidal force, they revealed that the fiery moon is unlikely to possess a global magma ocean.
      “Our technique isn’t restricted just to Io, Ceres, Vesta, or the Moon,” said Park. “There are many opportunities in the future to apply our technique for studying the interiors of intriguing planetary bodies throughout the solar system.”
      News Media Contacts
      Ian J. O’Neill
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-2649
      ian.j.oneill@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated May 14, 2025 Related Terms
      Vesta Dawn Earth's Moon GRAIL (Gravity Recovery And Interior Laboratory) Jet Propulsion Laboratory Planetary Science Small Bodies of the Solar System The Solar System Explore More
      7 min read Webb’s Titan Forecast: Partly Cloudy With Occasional Methane Showers
      Saturn’s moon Titan is an intriguing world cloaked in a yellowish, smoggy haze. Similar to…
      Article 3 hours ago 5 min read NASA’s Europa Clipper Captures Mars in Infrared
      Article 2 days ago 5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar…
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      ICON’s next generation Vulcan construction system 3D printing a simulated Mars habitat for NASA’s Crew Health and Performance Exploration Analog (CHAPEA) missions.ICON One of the keys to a sustainable human presence on distant worlds is using local, or in-situ, resources which includes building materials for infrastructure such as habitats, radiation shielding, roads, and rocket launch and landing pads. NASA’s Space Technology Mission Directorate is leveraging its portfolio of programs and industry opportunities to develop in-situ, resource capabilities to help future Moon and Mars explorers build what they need. These technologies have made exciting progress for space applications as well as some impacts right here on Earth. 
      The Moon to Mars Planetary Autonomous Construction Technology (MMPACT) project, funded by NASA’s Game Changing Development program and managed at the agency’s Marshall Space Flight Center in Huntsville, Alabama, is exploring applications of large-scale, robotic 3D printing technology for construction on other planets. It sounds like the stuff of science fiction, but demonstrations using simulated lunar and Martian surface material, known as regolith, show the concept could become reality. 
      Lunar 3D printing prototype.Contour Crafting With its partners in industry and academic institutions, MMPACT is developing processing technologies for lunar and Martian construction materials. The binders for these materials, including water, could be extracted from the local regolith to reduce launch mass. The regolith itself is used as the aggregate, or granular material, for these concretes. NASA has evaluated these materials for decades, initially working with large-scale 3D printing pioneer, Dr. Behrokh Khoshnevis, a professor of civil, environmental and astronautical engineering at the University of Southern California in Los Angeles.  
      Khoshnevis developed techniques for large-scale extraterrestrial 3D printing under the NASA Innovative Advanced Concepts (NIAC) program. One of these processes is Contour Crafting, in which molten regolith and a binding agent are extruded from a nozzle to create infrastructure layer by layer. The process can be used to autonomously build monolithic structures like radiation shielding and rocket landing pads. 
      Continuing to work with the NIAC program, Khoshnevis also developed a 3D printing method called selective separation sintering, in which heat and pressure are applied to layers of powder to produce metallic, ceramic, or composite objects which could produce small-scale, more-precise hardware. This energy-efficient technique can be used on planetary surfaces as well as in microgravity environments like space stations to produce items including interlocking tiles and replacement parts. 
      While NASA’s efforts are ultimately aimed at developing technologies capable of building a sustainable human presence on other worlds, Khoshnevis is also setting his sights closer to home. He has created a company called Contour Crafting Corporation that will use 3D printing techniques advanced with NIAC funding to fabricate housing and other infrastructure here on Earth.  
      Another one of NASA’s partners in additive manufacturing, ICON of Austin, Texas, is doing the same, using 3D printing techniques for home construction on Earth, with robotics, software, and advanced material.  
      Construction is complete on a 3D-printed, 1,700-square-foot habitat that will simulate the challenges of a mission to Mars at NASA’s Johnson Space Center in Houston, Texas. The habitat will be home to four intrepid crew members for a one-year Crew Health and Performance Analog, or CHAPEA, mission. The first of three missions begins in the summer of 2023. The ICON company was among the participants in NASA’s 3D-Printed Habitat Challenge, which aimed to advance the technology needed to build housing in extraterrestrial environments. In 2021, ICON used its large-scale 3D printing system to build a 1,700 square-foot simulated Martian habitat that includes crew quarters, workstations and common lounge and food preparation areas. This habitat prototype, called Mars Dune Alpha, is part of NASA’s ongoing Crew Health and Performance Exploration Analog, a series of Mars surface mission simulations scheduled through 2026 at NASA’s Johnson Space Center in Houston.  
      With support from NASA’s Small Business Innovation Research program, ICON is also developing an Olympus construction system, which is designed to use local resources on the Moon and Mars as building materials. 
      The ICON company uses a robotic 3D printing technique called Laser Vitreous Multi-material Transformation, in which high-powered lasers melt local surface materials, or regolith, that then solidify to form strong, ceramic-like structures. Regolith can similarly be transformed to create infrastructure capable of withstanding environmental hazards like corrosive lunar dust, as well as radiation and temperature extremes.  
      The company is also characterizing the gravity-dependent properties of simulated lunar regolith in an experiment called Duneflow, which flew aboard a Blue Origin reusable suborbital rocket system through NASA’s Flight Opportunities program in February 2025. During that flight test, the vehicle simulated lunar gravity for approximately two minutes, enabling ICON and researchers from NASA to compare the behavior of simulant against real regolith obtained from the Moon during an Apollo mission.    
      Learn more: https://www.nasa.gov/space-technology-mission-directorate/  
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More …
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      STMD Solicitations and Opportunities
      Technology
      Share
      Details
      Last Updated May 13, 2025 EditorLoura Hall Related Terms
      Space Technology Mission Directorate NASA Innovative Advanced Concepts (NIAC) Program Technology View the full article
    • By NASA
      Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY) JunoCam, the visible light imager aboard NASA’s Juno spacecraft, captured this view of Jupiter’s northern high latitudes during the spacecraft’s 69th flyby of the giant planet on Jan. 28, 2025. Jupiter’s belts and zones stand out in this enhanced color rendition, along with the turbulence along their edges caused by winds going in different directions.
      The original JunoCam data used to produce this view was taken from an altitude of about 36,000 miles (58,000 kilometers) above Jupiter’s cloud tops. JunoCam’s raw images are available for the public to peruse and process into image products. Citizen scientist Jackie Branc processed the image.
      Since Juno arrived at Jupiter in 2016, it has been probing beneath the dense, forbidding clouds encircling the giant planet – the first orbiter to peer so closely. It seeks answers to questions about the origin and evolution of Jupiter, our solar system, and giant planets across the cosmos.
      Learn more about NASA citizen science.
      Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS; Image processing: Jackie Branc (CC BY)
      View the full article
    • By NASA
      Artemis II crew members, shown inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, stand in front of their Orion crew module on Aug. 8, 2023. Pictured from left are CSA (Canadian Space Agency) astronaut Jeremy Hansen, and NASA astronauts Victor Glover, Reid Wiseman, and Christina Koch.Credit: NASA/Kim Shiflett NASA will host a live Twitch event to highlight the ongoing Moon Mascot Challenge, which invites the public to design a zero gravity indicator for the agency’s Artemis II crewed test flight around the Moon. Viewers will have the opportunity to provide real-time input to an artist who will create an example of a zero gravity indicator during the livestream. 
      Zero gravity indicators are small, plush items carried aboard spacecraft to provide a visual indication of when the crew reaches space.
      The event will begin at 3 p.m. EDT on Tuesday, May 13, on the agency’s official Twitch channel:
      https://www.twitch.tv/nasa
      The contest invites global creators of all ages to submit design ideas for a zero gravity indicator that will fly aboard the agency’s Artemis II test flight, the first crewed mission under NASA’s Artemis campaign.
      Up to 25 finalists, including entries from a K-12 student division, will be selected. The Artemis II crew will choose one design that NASA’s Thermal Blanket Lab will fabricate to fly alongside the crew in the Orion spacecraft.
      During this Twitch event, NASA experts will discuss the Moon Mascot Challenge while the artist incorporates live audience feedback into a sample design. Although the design example will not be eligible for the contest, it will demonstrate how challenge participants can develop their own zero gravity indicator designs. The example will be shared on the @NASAArtemis social media accounts following the Twitch event.
      The Artemis II test flight will take NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen on a 10-day journey around the Moon and back. The mission is another step toward missions on the lunar surface to help the agency prepare for future human missions to Mars.
      To learn more about NASA’s missions, visit:
      https://www.nasa.gov
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      rachel.h.kraft@nasa.gov
      Share
      Details
      Last Updated May 12, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Artemis 2 Earth's Moon Exploration Systems Development Mission Directorate Social Media View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. Full image below. Credits:
      NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.
      Auroras are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms or molecules of gas. On Earth these are known as the Northern and Southern Lights. Not only are the auroras on Jupiter huge in size, they are also hundreds of times more energetic than those in Earth’s atmosphere. Earth’s auroras are caused by solar storms — when charged particles from the Sun rain down on the upper atmosphere, energize gases, and cause them to glow in shades of red, green and purple.
      Image A: Close-up Observations of Auroras on Jupiter
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
      These observations of Jupiter’s auroras, taken at a wavelength of 3.36 microns (F335M) were captured with Webb’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Jupiter has an additional source for its auroras: The strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanoes. Io’s volcanoes spew particles that escape the moon’s gravity and orbit Jupiter. A barrage of charged particles unleashed by the Sun also reaches the planet. Jupiter’s large and powerful magnetic field captures all of the charged particles and accelerates them to tremendous speeds. These speedy particles slam into the planet’s atmosphere at high energies, which excites the gas and causes it to glow.
      Image B: Pullout of Aurora Observations on Jupiter (NIRCam Image)
      These observations of Jupiter’s auroras (shown on the left of the above image) at 3.35 microns (F335M) were captured with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Now, Webb’s unique capabilities are providing new insights into the auroras on Jupiter. The telescope’s sensitivity allows astronomers to capture fast-varying auroral features. New data was captured with Webb’s NIRCam (Near-Infrared Camera) Dec. 25, 2023, by a team of scientists led by Jonathan Nichols from the University of Leicester in the United Kingdom.
      “What a Christmas present it was – it just blew me away!” shared Nichols. “We wanted to see how quickly the auroras change, expecting them to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead, we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.”
      In particular, the team studied emission from the trihydrogen cation (H3+), which can be created in auroras. They found that this emission is far more variable than previously believed. The observations will help develop scientists’ understanding of how Jupiter’s upper atmosphere is heated and cooled.
      The team also uncovered some unexplained observations in their data.
      “What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with NASA’s Hubble Space Telescope,” added Nichols. “Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble’s pictures. This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have a combination of high quantities of very low-energy particles hitting the atmosphere, which was previously thought to be impossible. We still don’t understand how this happens.”
      Video: Webb Captures Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured a spectacular light show on Jupiter — an enormous display of auroras unlike anything seen on Earth. These infrared observations reveal unexpected activity in Jupiter’s atmosphere, challenging what scientists thought they knew about the planet’s magnetic field and particle interactions. Combined with ultraviolet data from Hubble, the results have raised surprising new questions about Jupiter’s extreme environment.
      Producer: Paul Morris. Writer: Thaddeus Cesari. Narrator: Professor Jonathan Nichols. Images: NASA, ESA, CSA, STScI. Music Credit: “Zero Gravity” by Brice Davoli [SACEM] via Koka Media [SACEM], Universal Production Music France [SACEM], and Universal Production Music. The team now plans to study this discrepancy between the Hubble and Webb data and to explore the wider implications for Jupiter’s atmosphere and space environment. They also intend to follow up this research with more Webb observations, which they can compare with data from NASA’s Juno spacecraft to better explore the cause of the enigmatic bright emission.
      These results were published today in the journal Nature Communications.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature Communications.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Bethany Downer – Bethany.Downer@esawebb.org
      ESA/Webb, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: NASA’s Webb Captures Neptune’s Auroras for the First Time
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Jupiter



      What Is the Solar Wind?



      Juno


      NASA’s Juno spacecraft has explored Jupiter, its moons, and rings since 2016, gathering breakthrough science and breathtaking imagery.

      Share








      Details
      Last Updated May 12, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Jupiter Planets Science & Research The Solar System View the full article
  • Check out these Videos

×
×
  • Create New...