Jump to content

NASA, GE Aerospace Advancing Hybrid-Electric Airliners with HyTEC


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Graphic shows a possible future General Electric jet engine with exposed fan blades in front of a cut-away-interior view of its core mechanisms -- all part of NASA's HyTEC research project.
This artist concept shows a NASA-developed small-core jet engine installed in General Electric Aerospace’s CFM RISE jet engine design. The more fuel-efficient small core powers a large open turbofan, which also helps increase efficiency. The effort is part of NASA’s Sustainable Flight National Partnership to help inform the next generation of ultra-efficient airliners.
GE Aerospace

Hybrid-electric cars have been a staple of the road for many years now.

Soon that same idea of a part-electric-, part-gas-powered engine may find its way into the skies propelling a future jet airliner.

NASA is working in tandem with industry partner GE Aerospace on designing and building just such an engine, one that burns much less fuel by including new components to help electrically power the engine.

In this hybrid jet engine, a fuel-burning core powers the engine and is assisted by electric motors. The motors produce electric power, which is fed back into the engine itself—therefore reducing how much fuel is needed to power the engine in the first place.

It really opens the door for more sustainable aviation even beyond the 2030s.

Anthony nerone

Anthony nerone

NASA Project Manager

High Tech Hybrid-Electric

The work is happening as part of NASA’s Hybrid Thermally Efficient Core (HyTEC) project. This work intends to demonstrate this engine concept by the end of 2028 to enable its use on airliners as soon as the 2030s.

It represents a major step forward in jet engine technology.

This jet engine would be the first ever mild hybrid-electric jet engine. A “mild hybrid” engine can be powered partially by electrical machines operating both as motors and generators.

“This will be the first mild hybrid-electric engine and could lead to the first production engine for narrow-body airliners that’s hybrid electric,” said Anthony Nerone, who leads the HyTEC project from NASA’s Glenn Research Center in Cleveland. “It really opens the door for more sustainable aviation even beyond the 2030s.”

The hybrid-electric technology envisioned by NASA and GE Aerospace also could be powered by a new small jet engine core.

A major HyTEC project goal is to design and demonstrate a jet engine that has a smaller core but produces about the same amount of thrust as engines being flown today on single-aisle aircraft.

At the same time, the smaller core technology aims to reduce fuel burn and emissions by an estimated 5 to 10%.

A man working in an industrial laboratory wearing sunglasses points a camera at a silver exhaust port emitting a superhot blue flame that is striking a material causing it to glow bright orange.
Michael Presby, a research materials engineer at NASA’s Glenn Research Center in Cleveland, adjusts an infrared thermal imaging camera used to monitor the temperature profile of a NASA-developed, high-temperature environmental barrier coating deposited on a ceramic matrix composite in support of the agency’s HyTEC project. The composite’s environmental barrier coating surface temperature is 3,000 degrees Fahrenheit.
NASA / Bridget Caswell

How Does It Work?

A GE Aerospace Passport engine is being modified with hybrid electric components for testing.

“Today’s jet engines are not really hybrid electric,” Nerone said. “They have generators powering things like lights, radios, TV screens, and that kind of stuff. But not anything that can power the engines.”

The challenge is figuring out the best times to use the electric motors.

“Later this year, we are doing some testing with GE Aerospace to research which phases of flight we can get the most fuel savings,” Nerone said.

Embedded electric motor-generators will optimize engine performance by creating a system that can work with or without energy storage like batteries. This could help accelerate the introduction of hybrid-electric technologies for commercial aviation prior to energy storage solutions being fully matured.

“Together with NASA, GE Aerospace is doing critical research and development that could help make hybrid-electric commercial flight possible,” said Arjan Hegeman, general manager of future of flight technologies at GE Aerospace.

The technologies related to HyTEC are among those GE Aerospace is working to mature and advance under CFM International’s Revolutionary Innovation for Sustainable Engines (RISE) program. CFM is a joint venture between GE Aerospace and Safran Aircraft Engines. CFM RISE, which debuted in 2021, encompasses a suite of technologies including advanced engine architectures and hybrid electric systems aimed at being compatible with 100% Sustainable Aviation Fuel.

HyTEC, part of NASA’s Advanced Air Vehicles Program, is a key area of NASA’s Sustainable Flight National Partnership, which is collaborating with government, industry, and academic partners to address the U.S. goal of net-zero greenhouse gas emissions in aviation by the year 2050.

About the Author

John Gould

John Gould

Aeronautics Research Mission Directorate

John Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.

Keep Exploring

Discover More Topics From NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)


      Human-rating is a critical certification process that validates the safety, reliability, and suitability of space systems—including orbiters, launch vehicles, rovers, spacesuits, habitats, and other crewed elements—for human use and interaction. This process ensures that systems are designed not only to protect human life but also to accommodate human needs and effectively integrate human capabilities. Human-rating requires that systems can tolerate failures, provide life-sustaining environments, and offer the crew sufficient control and situational awareness. NASA’s standards, such as a maximum allowable probability of loss of crew of 1 in 500 for ascent or descent, reflect the agency’s commitment to minimizing risk in human spaceflight.
      Over the decades, the concept of human-rating has evolved significantly. Early efforts focused primarily on basic crew survival and redundancy in critical systems. However, as missions became more complex and extended in duration, the scope of human-rating expanded to include human performance, health management, and the psychological and physiological demands of space travel. Today, human-rating is a multidisciplinary effort that integrates engineering, medical, and operational expertise to ensure that systems are not only survivable but also support optimal human function in extreme environments.
      Modern human-rating standards—such as NASA Procedural Requirements (NPR) 8705.2C, NASA-STD-8719.29 (Technical Requirements for Human-Rating), and NASA-STD-3001 (Human System Standards)—form the foundation of NASA’s approach. These documents emphasize risk-informed design, fault tolerance, human factors engineering, and the ability to recover from hazardous situations. They also provide detailed guidance on system safety, crew control interfaces, abort capabilities, and environmental health requirements. Together, they ensure that human spaceflight systems are designed to accommodate, utilize, and protect the crew throughout all mission phases.
      The human-rating certification process is rigorous and iterative. It involves extensive testing, validation, and verification of system performance, including simulations, flight tests, and integrated safety analyses. Certification also requires continuous monitoring, configuration control, and maintenance to ensure that systems remain in their certified state throughout their operational life. Importantly, human-rating is not just a checklist of technical requirements—it represents a cultural commitment to crew safety. It fosters a mindset in which every team member, from design engineers to mission operators, shares responsibility for protecting human life.
      To support program and project teams in applying these standards, NASA has conducted cross-reviews of documents like NASA-STD-3001 in relation to NASA-STD-8719.29. These assessments help identify relevant human health and performance requirements that should be considered during system design and development. While not a substitute for detailed applicability assessments, such reviews provide valuable guidance for integrating human-rating principles into mission planning and vehicle architecture.
      NASA/Sydney Bergen-Hill Read More About Human Rating Share
      Details
      Last Updated Aug 15, 2025 Related Terms
      General Artemis Commercial Space Humans in Space International Space Station (ISS) Office of the Chief Health and Medical Officer (OCHMO) Spacesuits Keep Exploring Discover Related Topics
      Human Spaceflight Standards
      The Human Spaceflight & Aviation Standards Team continually works with programs to provide the best standards and implementation documentation to…
      Technical Briefs
      Technical Briefs are available for standards that offer technical data, background, and application notes for vehicle developers and medical professionals.…
      Aerospace Medical Certification Standard
      This NASA Technical Standard provides medical requirements and clinical procedures designed to ensure crew health and safety and occupational longevity…
      Human Integration Design Handbook
      A companion document to NASA-STD-3001 Volume 2 is the Human Integration Design Handbook (HIDH). The HIDH is a compendium of…
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA now is accepting proposals from student teams for a contest to design, build, and test rovers for Moon and Mars exploration through Sept. 15.
      Known as the Human Exploration Rover Challenge, student rovers should be capable of traversing a course while completing mission tasks. The challenge handbook has guidelines for remote-controlled and human-powered divisions.
      The cover of the HERC 2026 handbook, which is now available online. “Last year, we saw a lot of success with the debut of our remote-controlled division and the addition of middle school teams,” said Vemitra Alexander, the activity lead for the challenge at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “We’re looking forward to building on both our remote-controlled and human-powered divisions with new challenges for the students, including rover automation.” 
      This year’s mission mimics future Artemis missions to the lunar surface. Teams are challenged to test samples of soil, water, and air from sites along a half-mile course that includes a simulated field of asteroid debris, boulders, erosion ruts, crevasses, and an ancient streambed. Human-powered rover teams will play the role of two astronauts in a lunar terrain vehicle and must use a custom-built task tool to manually collect samples needed for testing. Remote-controlled rover teams will act as a pressurized rover, and the rover itself will contain the tools necessary to collect and test samples onboard. 
      “NASA’s Human Exploration Rover Challenge creates opportunities for students to develop the skills they need to be successful STEM professionals,” said Alexander. “This challenge will help students see themselves in the mission and give them the hands-on experience needed to advance technology and become the workforce of tomorrow.” 
      Seventy-five teams comprised of more than 500 students participated in the agency’s 31st rover challenge in 2025. Participants represented 35 colleges and universities, 38 high schools, and two middle schools, across 20 states, Puerto Rico, and 16 nations around the world.
      The 32nd annual competition will culminate with an in-person event April 9-11, 2026, at the U.S. Space & Rocket Center near NASA Marshall.
      The rover challenge is one of NASA’s Artemis Student Challenges, reflecting the goals of the Artemis campaign, which seeks to explore the Moon for scientific discovery, technology advancement, and to learn how to live and work on another world as we prepare for human missions to Mars. NASA uses such challenges to encourage students to pursue degrees and careers in the fields of science, technology, engineering, and mathematics. 
      Since its inception in 1994, more than 15,000 students have participated in the rover challenge – with many former students now working at NASA or within the aerospace industry.    
      To learn more about HERC, visit: 
      https://www.nasa.gov/roverchallenge/
      Share
      Details
      Last Updated Aug 15, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      4 min read NASA IXPE’s ‘Heartbeat Black Hole’ Measurements Challenge Current Theories
      Article 3 days ago 6 min read NASA’s Hubble, Chandra Spot Rare Type of Black Hole Eating a Star
      NASA’s Hubble Space Telescope and NASA’s Chandra X-ray Observatory have teamed up to identify a…
      Article 3 weeks ago 4 min read Stay Cool: NASA Tests Innovative Technique for Super Cold Fuel Storage
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Roscosmos cosmonaut Kirill Peskov, left, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi are seen inside the SpaceX Dragon spacecraft on the company’s recovery ship shortly after splashdown in the Pacific Ocean off the coast of San Diego, California, on Aug. 9, 2025.Credit: NASA/Keegan Barber After spending almost five months in space, NASA’s SpaceX Crew-10 astronauts will discuss their science mission aboard the International Space Station during a news conference at 4:15 p.m. EDT, Wednesday, Aug. 20, from the agency’s Johnson Space Center in Houston.
       
      NASA astronauts Anne McClain and Nichole Ayers, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi will answer questions about their mission. The crew returned to Earth on Aug. 9.
       
      Live coverage of the news conference will stream on the agency’s YouTube channel. Learn how to watch NASA content through a variety of additional platforms, including social media.
       
      This event is open to media to attend in person or virtually. For in-person, media must contact the NASA Johnson newsroom no later than 12 p.m., Tuesday, Aug. 19, at: jsccommu@mail.nasa.gov or 281-483-5111. Media participating by phone must dial into the news conference no later than 10 minutes prior to the start of the event to ask questions. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is available on the agency’s website.
       
      The crew spent 146 days aboard the orbiting laboratory, traveling nearly 62,795,205 million miles and completing 2,368 orbits around Earth. While living and working aboard the station, the crew completed hundreds of science experiments and technology demonstrations. The latest NASA space station news, images, and features are available on Instagram, Facebook, and X.

      NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. For almost 25 years, people have continuously lived and worked aboard the space station, advancing scientific knowledge and demonstrating new technologies that enable us to prepare for human exploration of the Moon as we prepare for Mars.

      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Aug 14, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center View the full article
    • By NASA
      NASA Honor Award recipients are shown with their award plaques, alongside NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell, following the ceremony at NASA Stennis on Aug. 13. Pictured (left to right) is Andrew Bracey, Briou Bourgeois, Jared Grover, Robert Simmers, Robert Williams, Richard Wear, Tom Stanley, Alison Dardar, Marvin Horne, Cary Tolman, Tim Pierce, Rebecca Mataya, Bailey, Powell, Gina Ladner, and Brittany Bouche. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey speaks to employees during the NASA Honor Awards ceremony at NASA Stennis on Aug. 13. NASA/Danny Nowlin NASA Stennis Space Center Director John Bailey and Deputy Director Christine Powell presented NASA Honor Awards to employees during an onsite ceremony Aug. 13.
      One NASA Stennis employee received NASA’s Outstanding Leadership Medal. The medal is awarded to government employees for notable leadership accomplishments that have significantly influenced the NASA mission.
      Marvin Horne of Fulton, Maryland, received the NASA Outstanding Leadership Medal for his work in the Office of Procurement that has resulted in significant cost savings for the agency. Among his accomplishments, Horne designed, implemented, and led an integrated contract management office between NASA Stennis, NASA’s Michoud Assembly Facility in New Orleans, and NASA’s Marshall Space Flight Center in Huntsville, Alabama. The office transformed facility services from independent models to a shared model. The innovative solution was the first joint contract management office at NASA Stennis comprised of procurement, finance, and technical personnel designed to implement effective and efficient business processes. Horne currently serves as the NASA acting administrator for procurement.
      Three NASA Stennis employees received NASA’s Exceptional Service Medal. The medal is awarded to government employees for sustained performance that embodies multiple contributions to NASA projects, programs, or initiatives.
      Jared Grover of Diamondhead, Mississippi, received the NASA Exceptional Service Medal for his contributions to the success of the NASA Stennis E Test Complex through his dedication and technical expertise. As a NASA mechanical operations engineer, he has led various testing and facility preparation efforts, worked with challenging propellants, and trained new personnel. His work has supported numerous NASA and commercial aerospace projects Grover is also active in community outreach, promoting NASA’s mission and inspiring future engineers.
      Tim Pierce of Long Beach, Mississippi, received the NASA Exceptional Service Medal following 26 years with NASA and 41 years working at NASA Stennis as a contractor and civil servant in the Center Operations Directorate. Through Pierce’s contributions, NASA Stennis became a leader in drafting agreements with external agencies, streamlining administrative procedures, and enhancing partnerships. In one notable instance, he led efforts to collaborate with county officials on a sewer treatment project that will save costs and optimize underused infrastructure. Pierce retired from NASA in January 2025.
      Barry Robinson of Slidell, Louisiana, received the NASA Exceptional Service Medal in absentia for service to the nation’s space program and achievement across multiple propulsion test programs and projects. Robinson joined NASA in 1994 and worked on the space shuttle main engine test project, eventually becoming a test operations consultant. Over the years, Robinson held various roles, including chief of the NASA Stennis Mechanical Engineering Branch and project manager for projects supporting NASA’s SLS (Space Launch System) rocket for Artemis missions to the Moon and beyond. Robinson retired from NASA in December 2024.
      One NASA Stennis employee received NASA’s Exceptional Engineering Achievement Medal. The medal is awarded to both government and non-government individuals for exceptional engineering contributions toward achievement of NASA’s mission.
      Richard Wear of Slidell, Louisiana, received the NASA Exceptional Engineering Achievement Medal for his contributions to the NASA Stennis Engineering and Test Directorate. Wear serves as the subject matter expert in thermal and fluid systems analysis. In that role, he has greatly contributed to facilitating the use of liquid natural gas propellant in testing onsite, including by developing a Cryogenics in Propulsion Testing training course to support future test projects and programs. His contributions have significantly enhanced NASA’s support for commercial partners at NASA Stennis.
      Eight NASA Stennis employees received NASA’s Exceptional Achievement Medal. This medal is awarded to any government employee for a significant specific achievement or substantial improvement in operations, efficiency, service, financial savings, science, or technology which contributes to the mission of NASA.
      Leslie Anderson of Picayune, Mississippi, received the NASA Exceptional Achievement Medal in absentia for leadership and customer service as the lead accountant in the Office of the Chief Financial Officer at NASA Stennis. Anderson has successfully managed critical financial activities with technical expertise, project management, and strong customer service skills. Her efforts help maintain federal partnerships worth approximately $70 million annually and contribute to the success of NASA Stennis, demonstrating NASA’s core values of integrity, teamwork, excellence, and inclusion.
      Alison Dardar of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for innovation in improving financial and technical processes associated with the $1 billion-plus consolidated operations and maintenance contract for NASA Stennis and NASA’s Michoud Assembly Facility in New Orleans. As senior budget analyst in the NASA Stennis Office of the Chief Financial Officer, Dardar led in identifying and addressing key reporting and accounting issues related to the contract. Her innovations resulted in a 55% improvement in cost reporting accuracy and $20 million in savings to the contract.
      Gina Ladner of Diamondhead, Mississippi, received the NASA Exceptional Achievement Medal for management, problem solving, and leadership during a year-long detail as chief of the NASA Stennis Facilities Services Division. During the year, Ladner led the division team through numerous changes and tackled unexpected challenges, including a severe weather event that featured confirmed tornados onsite and a contractor work stoppage activity, to ensure ongoing site operations. She also led in numerous infrastructure investments, including repairs to roadways, fire systems, and communications equipment.
      Rebecca Mataya of Carriere, Mississippi, received the NASA Exceptional Achievement Medal for service as a budget analyst in the NASA Stennis Office of the Chief Financial Officer in improving processes and operations. As an analyst on the procurement development team for a new operations, services, and infrastructure contract, Mataya identified creative methods to increase cost savings and maximize facility projects. She also has helped secure over $408 million for facility improvements, enhancing water systems, power generation, and more.
      Tom Stanley of Biloxi, Mississippi, received the NASA Exceptional Achievement Medal for contributions to improve NASA’s technology transfer process. As the NASA Stennis technology transfer officer, he developed a tool to standardize and automate evaluation of software usage agreements, reducing costs by 10 times and evaluation time by 75%. The changes led to record numbers of agreements awarded. Stanley also created a tool for contract closeouts, which has contributed to cost savings for the agency.
      Cary Tolman of Fort Walton Beach, Florida, received the NASA Exceptional Achievement Medal for work in the NASA Office of the General Counsel. Beyond her role as procurement attorney, Tolman established a software and management audit review team to provide consistent and timely legal advice on software licenses and terms. Tolman’s work has helped NASA save $85 million and simplified legal support for software issues while reducing cybersecurity and financial risk.
      Casey Wheeler of Gulfport, Mississippi, received the NASA Exceptional Achievement Medal for leadership and innovation in replacing the high pressure water industrial water system that supports crucial testing facilities at NASA Stennis. As project manager in the NASA Stennis Center Operations Directorate, Wheeler showcased his planning and coordination skills by completing the complex project without delaying rocket engine testing. His work restored the system to full design pressure in an area that directly supports NASA’s SLS (Space Launch System) rocket through RS-25 engine testing, and other critical projects.
      Dale Woolridge of Slidell, Louisiana, received the NASA Exceptional Achievement Medal in absentia for contributions as project manager in the NASA Stennis Center Operations Directorate. Woolridge successfully led multiple construction projects, completing them on time and within budget. One notable project was the refurbishment of the miter gates at NASA Stennis’ navigational lock, which supports NASA’s rocket engine testing operations. The team completed the refurbishment ahead of schedule and within budget, ensuring minimal disruption to NASA operations.
      Four NASA Stennis employees received NASA’s Early Career Achievement Medal. The medal is awarded to government employees for unusual and significant performance during the first 10 years of an individual’s career in support of the agency.
      Briou Bourgeois of Pass Christian, Mississippi, received the NASA Early Career Achievement for his contributions in the NASA Stennis Engineering and Test Directorate. Bourgeois joined NASA in 2017 and has worked on various projects, including the SLS (Space Launch System) core stage Green Run test series and RS-25 engine testing for Artemis missions. Bourgeois played a key role in modifying the liquid oxygen tanking process during the SLS core stage series. He has since become test director in the NASA Stennis E Test Complex and a leader in commercial test projects at NASA Stennis.
      Brandon Ladner of Poplarville, Mississippi, received the NASA Early Career Achievement Medal for contributions to the Exploration Upper Stage Test Project on the Thad Cochran Test Stand at NASA Stennis. As the NASA lead mechanical design engineer for the project, Ladner has significantly contributed to the design and build-up of the B-2 position of the Thad Cochran Test Stand in preparation for Green Run testing of the new SLS (Space Launch System) upper stage. He has led in completion of numerous large design packages and provided valuable engineering oversight to improve construction schedule.
      Robert Simmers of Slidell, Louisiana, received the NASA Early Career Achievement for his expertise and versatility since joining NASA in 2015 as a member of the NASA Stennis Safety and Mission Assurance Directorate team. He serves as the safety point of contact for the Thad Cochran Test Stand (B-2). In that role, he supported all operations during Green Run testing of NASA’s SLS (Space Launch System) core stage. Simmers also has supported safety audits at various NASA centers. In 2020, he became the NASA Stennis explosive safety officer responsible for explosive safety and compliance.
      Robert Williams of Gulfport, Mississippi, received the NASA Early Career Achievement for his work in the NASA Stennis Engineering and Test Directorate. Williams has worked with NASA for eight years, serving as a lead mechanical design engineer for several commercial test projects. Williams is recognized as a subject matter expert in structural systems and has contributed to various NASA Stennis projects, providing technical and modeling expertise.
      Two NASA Stennis employees received NASA’s Silver Achievement Medal. The medal is awarded to any government or non-government employee for a stellar achievement that supports one or more of NASA’s core values, when it is deemed to be extraordinarily important and appropriate to recognize such achievement in a timely and personalized manner.
      Brittany Bouche of Slidell, Louisiana, received the NASA Silver Achievement Medal for contributions in the NASA Stennis Center Operations Directorate. Bouche has held multiple key roles in the Facilities Services Division, including acting deputy, maintenance and operations lead, and project manager for several construction projects. She has successfully led various design and construction projects, completing them on time and within budget. These include a $9.1 million sewage system and treatment repair project, successfully completed with minimal service impact.
      Andrew Bracey of Picayune, Mississippi, received the NASA Silver Achievement Medal for contributions as a NASA electrical design engineer at NASA Stennis. He has provided critical design support for work related to Green Run testing of the new SLS (Space Launch System) exploration upper stage. Bracey also has been crucial to the NASA Stennis vision of supporting commercial aerospace testing, leading preliminary design reviews for multiple projects onsite.
      Read More on Stennis Space Center Share
      Details
      Last Updated Aug 14, 2025 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      6 min read A Defining Era: NASA Stennis and Space Shuttle Main Engine Testing
      Article 3 months ago 4 min read NASA Stennis Releases First Open-Source Software
      Article 3 months ago 5 min read NASA Stennis Software is Built for Future Growth
      Article 3 months ago View the full article
    • By NASA
      NASA has demonstrated a breakthrough in 3D-printable high-temperature materials that could lead to stronger, more durable parts for airplanes and spacecraft. Credit: NASA/Jordan Salkin  NASA’s Inventions and Contributions Board (ICB) has awarded Commercial Invention of the Year to NASA Glenn Research Center’s GRX-810: A 3D Printable Alloy Designed for Extreme Environments.  

      NASA Alloy GRX–810, an oxide dispersion strengthened (ODS) alloy, can endure temperatures over 2,000 degrees Fahrenheit. It is more malleable and can survive more than 1,000 times longer than existing state-of-the-art alloys. This new alloy can be used to build aerospace parts for high-temperature applications, like those inside aircraft and rocket engines, because ODS alloys can withstand harsher conditions before reaching their breaking point. 
      The NASA Glenn team of inventors includes Dr. Timothy Smith (co-lead), Dr. Christopher Kantzos (co-lead), Robert Carter, and Dr. Michael Kulis. 
      Four American companies have been granted co-exclusive licenses to produce and market GRX-810 material. All four have replicated NASA Glenn’s patented process and are selling fully coated materials. This benefits the United States economy as a return on investment of taxpayer dollars.  
      For more information on this technology, visit 3D Printed Alloy and New Material Built to Withstand Extreme Conditions. 
      The NASA insignia is 3D printed using the GRX-810 superalloy. 
      Video Credit: NASA/Jordan Salkin
      Additionally, the ICB selected NASA Glenn’s High-Rate Delay Tolerant Networking (HDTN) project for an honorable mention in the Software of the Year category. HDTN is a protocol suite that extends terrestrial internet principles to the space environment, creating a high-speed data transfer path for spacecraft and different communication systems. It is an optimized version of the DTN standard for high-rate radio frequency and optical links.  
      The ICB reviews and recommends awards for significant scientific and technical contributions to the agency’s aeronautical and space activities. These awards recognize technologies that not only advance NASA’s mission but also benefit the public through commercialization.  
      Return to Newsletter Explore More
      2 min read NASA Glenn Shoots for the Stars During WNBA All-Star Weekend
      Article 1 day ago 3 min read NASA Drop Test Supports Safer Air Taxi Design and Certification
      Article 2 weeks ago 3 min read NASA Rehearses How to Measure X-59’s Noise Levels
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...