Jump to content

Recommended Posts

Posted
low_STSCI-H-p-9934a-k1340x520.png

The Hubble telescope is uncovering important new clues to a galaxy's birth and growth by peering into its heart - a bulge of millions of stars resembling a bulbous center yolk in the middle of a disk of egg white.

Astronomers have combined information from the Hubble telescope's visible- and infrared-light cameras to show the heart of four spiral galaxies peppered with ancient populations of stars. The top row of pictures, taken by a ground-based telescope, represents complete views of each galaxy. The blue boxes outline the regions observed by the Hubble telescope. The bottom row represents composite pictures from Hubble's visible- and infrared-light cameras. Astronomers combined views from both cameras to obtain the true ages of the stars surrounding each galaxy's bulge. The Hubble telescope's sharper resolution allows astronomers to study the intricate structure of a galaxy's central region.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Spies Galaxy with Lots to See
      This NASA/ESA Hubble Space Telescope features the galaxy NGC 7456. ESA/Hubble & NASA, D. Thilker While it may appear as just another spiral galaxy among billions in the universe, this image from the NASA/ESA Hubble Space Telescope reveals a galaxy with plenty to study. The galaxy, NGC 7456, is located over 51 million light-years away in the constellation Grus (the Crane).
      This Hubble image reveals fine detail in the galaxy’s patchy spiral arms, followed by clumps of dark, obscuring dust. Blossoms of glowing pink are rich reservoirs of gas where new stars are forming, illuminating the clouds around them and causing the gas to emit this tell-tale red light. The Hubble observing program that collected this data focused on the galaxy’s stellar activity, tracking new stars, clouds of hydrogen, and star clusters to learn how the galaxy evolved through time.
      Hubble, with its ability to capture visible, ultraviolet, and some infrared light, is not the only observatory focused on NGC 7456. ESA’s XMM-Newton satellite imaged X-rays from the galaxy on multiple occasions, discovering many so-called ultraluminous X-ray sources. These small, compact objects emit terrifically powerful X-rays, much more than researchers would expect, given their size. Astronomers are still trying to pin down what powers these extreme objects, and NGC 7456 contributes a few more examples.
      The region around the galaxy’s supermassive black hole is also spectacularly bright and energetic, making NGC 7456 an active galaxy. Whether looking at its core or its outskirts, at visible light or X-rays, this galaxy has something interesting for astronomers to study!
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Sep 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Science Behind the Discoveries



      Hubble Design



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Universe Uncovered Hubble’s Partners in Science AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Astronaut Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Homes in on Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the asymmetric spiral galaxy Messier 96. ESA/Hubble & NASA, F. Belfiore, D. Calzetti This NASA/ESA Hubble Space Telescope image features a galaxy whose asymmetric appearance may be the result of a galactic tug of war. Located 35 million light-years away in the constellation Leo, the spiral galaxy Messier 96 is the brightest of the galaxies in its group. The gravitational pull of its galactic neighbors may be responsible for Messier 96’s uneven distribution of gas and dust, asymmetric spiral arms, and off-center galactic core.
      This asymmetric appearance is on full display in the new Hubble image that incorporates data from observations made in ultraviolet, near infrared, and visible/optical light. Earlier Hubble images of Messier 96 were released in 2015 and 2018. Each successive image added new data, building up a beautiful and scientifically valuable view of the galaxy.
      The 2015 image combined two wavelengths of optical light with one near infrared wavelength. The optical light revealed the galaxy’s uneven form of dust and gas spread asymmetrically throughout its weak spiral arms and its off-center core, while the infrared light revealed the heat of stars forming in clouds shaded pink in the image.
      The 2018 image added two more optical wavelengths of light along with one wavelength of ultraviolet light that pinpointed areas where high-energy, young stars are forming.
      This latest version offers us a new perspective on Messier 96’s star formation. It includes the addition of light that reveals regions of ionized hydrogen (H-alpha) and nitrogen (NII). This data helps astronomers determine the environment within the galaxy and the conditions in which stars are forming. The ionized hydrogen traces ongoing star formation, revealing regions where hot, young stars are ionizing the gas. The ionized nitrogen helps astronomers determine the rate of star formation and the properties of gas between stars, while the combination of the two ionized gasses helps researchers determine if the galaxy is a starburst galaxy or one with an active galactic nucleus.
      The bubbles of pink gas in this image surround hot, young, massive stars, illuminating a ring of star formation in the galaxy’s outskirts. These young stars are still embedded within the clouds of gas from which they were born. Astronomers will use the new data in this image to study how stars are form within giant dusty gas clouds, how dust filters starlight, and how stars affect their environments.
      Explore More:

      Learn more about why astronomers study light in detail


      Explore the different wavelengths of light Hubble sees


      Explore the Night Sky: Messier 96

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Aug 29, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s 35th Anniversary



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      In the past decade, the European Space Agency’s Gaia mission has revealed the nature, history, and behaviour of billions of stars. Our pioneering stargazer has reshaped our view of the skies around us like no other, revealing that star clusters are more connected than expected over vast distances.
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered AI and Hubble Science Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Observes Noteworthy Nearby Spiral Galaxy
      This NASA/ESA Hubble Space Telescope image features the nearby spiral galaxy NGC 2835. ESA/Hubble & NASA, R. Chandar, J. Lee and the PHANGS-HST team This NASA/ESA Hubble Space Telescope image offers a new view of the nearby spiral galaxy NGC 2835, which lies 35 million light-years away in the constellation Hydra (the Water Snake). The galaxy’s spiral arms are dotted with young blue stars sweeping around an oval-shaped center where older stars reside.
      This image differs from previously released images from Hubble and the NASA/ESA/CSA James Webb Space Telescope because it incorporates new data from Hubble that captures a specific wavelength of red light called H-alpha. The regions that are bright in H-alpha emission are visible along NGC 2835’s spiral arms, where dozens of bright pink nebulae appear like flowers in bloom. Astronomers are interested in H-alpha light because it signals the presence of several different types of nebulae that arise during different stages of a star’s life. Newborn, massive stars create nebulae called H II regions that are particularly brilliant sources of H-alpha light, while dying stars can leave behind supernova remnants or planetary nebulae that can also be identified by their H-alpha emission.
      By using Hubble’s sensitive instruments to survey 19 nearby galaxies, researchers aim to identify more than 50,000 nebulae. These observations will help to explain how stars affect their birth neighborhoods through intense starlight and winds.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Aug 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Astronauts



      Hubble e-Books



      Hubble’s Night Sky Challenge


      View the full article
    • By NASA
      6 min read
      NASA, IBM’s ‘Hot’ New AI Model Unlocks Secrets of Sun
      This image from June 20, 2013 shows the bright light of a solar flare and an eruption of solar material shooting through the sun’s atmosphere, called a prominence eruption. Shortly thereafter, this same region of the sun sent a coronal mass ejection out into space — a phenomenon which can cause magnetic storms that degrade communication signals and cause unexpected electrical surges in power grids on Earth. NASA’s new heliophysics AI foundation model, Surya, can help predict these storms. NASA/Goddard/SDO NASA is turning up the heat in solar science with the launch of the Surya Heliophysics Foundational Model, an artificial intelligence (AI) model trained on 14 years of observations from NASA’s Solar Dynamics Observatory. 
      Developed by NASA in partnership with IBM and others, Surya uses advances in AI to analyze vast amounts of solar data, helping scientists better understand solar eruptions and predict space weather that threatens satellites, power grids, and communication systems. The model can be used to provide early warnings to satellite operators and helps scientists predict how the Sun’s ultraviolet output affects Earth’s upper atmosphere.
      Preliminary results show Surya is making strides in solar flare forecasting, a long-standing challenge in heliophysics. Surya, with its ability to generate visual predictions of solar flares two hours into the future, marks a major step towards the use of AI for operational space weather prediction. These initial results surpass existing benchmarks by 15%. By providing open access to the model on HuggingFace and the code on GitHub, NASA encourages the science and applications community to test and explore this AI model for innovative solutions that leverage the unique value of continuous, stable, long-duration datasets from the Solar Dynamics Observatory.
      Illustrations of Solar Dynamics Observatory solar imagery used for training Surya: Solar coronal ultraviolet and extreme ultraviolet images from the Atmospheric Imaging Assembly (AIA) and solar surface velocity and magnetic field maps from the Helioseismic and Magnetic Imager (HMI). NASA/SDO The model’s success builds directly on the Solar Dynamics Observatory’s long-term database. Launched in 2010, NASA’s Solar Dynamics Observatory has provided an unbroken, high-resolution record of the Sun for nearly 15 years through capturing images every 12 seconds in multiple wavelengths, plus precise magnetic field measurements. This stable, well-calibrated dataset, spanning an entire solar cycle, is uniquely suited for training AI models like Surya, enabling them to detect subtle patterns in solar behavior that shorter datasets would miss.
      Surya’s strength lies in its foundation model architecture, which learns directly from raw solar data. Unlike traditional AI systems that require extensive labeling, Surya can adapt quickly to new tasks and applications. Applications include tracking active regions, forecasting flare activity, predicting solar wind speed, and integrating data from other observatories including the joint NASA-ESA Solar and Heliospheric Observatory mission and NASA’s Parker Solar Probe.
      “We are advancing data-driven science by embedding NASA’s deep scientific expertise into cutting-edge AI models,” said Kevin Murphy, chief science data officer at NASA Headquarters in Washington. “By developing a foundation model trained on NASA’s heliophysics data, we’re making it easier to analyze the complexities of the Sun’s behavior with unprecedented speed and precision. This model empowers broader understanding of how solar activity impacts critical systems and technologies that we all rely on here on Earth.”
      These images compare the ground-truth data (right) with model output (center) for solar flares, which are the events behind most space weather. Surya’s prediction is very close to what happened in reality (right). These preliminary results suggest that Surya has learned enough solar physics to predict the structure and evolution of a solar flare by looking at its beginning phase. NASA/SDO/ODSI IMPACT AI Team Solar storms pose significant risks to our technology-dependent society. Powerful solar events energize Earth’s ionosphere, resulting in substantial GPS errors or complete signal loss to satellite communications. They also pose risks to power grids, as geomagnetically induced currents from coronal mass ejections can overload transformers and trigger widespread outages.
      In commercial aviation, solar flares can disrupt radio communications and navigation systems while exposing high-altitude flights to increased radiation. The stakes are even higher for human spaceflight. Astronauts bound for the Moon or Mars may need to depend on precise predictions to shelter from intense radiation during solar particle events.
      The Sun’s influence extends to the growing number of low Earth orbit satellites, including those that deliver global high-speed internet. As solar activity intensifies, it heats Earth’s upper atmosphere, increasing drag that slows satellites, pulls them from orbit, and causes premature reentry. Satellite operators often struggle to forecast where and when solar flares might affect these satellites.
      The “ground truth” solar activity is shown on the top row. The bottom row shows solar activity predicted by Surya. NASA/SDO/ODSI IMPACT AI Team “Our society is built on technologies that are highly susceptible to space weather,” said Joseph Westlake, Heliophysics Division director at NASA Headquarters. “Just as we use meteorology to forecast Earth’s weather, space weather forecasts predict the conditions and events in the space environment that can affect Earth and our technologies. Applying AI to data from our heliophysics missions is a vital step in increasing our space weather defense to protect astronauts and spacecraft, power grids and GPS, and many other systems that power our modern world.”
      While Surya is designed to study the Sun, its architecture and methodology are adaptable across scientific domains. From planetary science to Earth observation, the project lays the foundational infrastructure for similar AI efforts in diverse domains.
      Surya is part of a broader NASA push to develop open-access, AI-powered science tools. Both the model and training datasets are freely available online to researchers, educators, and students worldwide, lowering barriers to participation and sparking new discoveries.
      The process for creating Surya. Foundation models enhance the utility of NASA’s Solar Dynamics Observatory datasets and create a base for building new applications. NASA/ODSI IMPACT AI Team Surya’s training was supported in part by the National Artificial Intelligence Research Resource (NAIRR) Pilot, a National Science Foundation (NSF)-led initiative that provides researchers with access to advanced computing, datasets, and AI tools. The NAIRR Pilot brings together federal and industry resources, such as computing power from NVIDIA, to expand access to the infrastructure needed for cutting-edge AI research.
      “This project shows how the NAIRR Pilot is uniting federal and industry AI resources to accelerate scientific breakthroughs,” said Katie Antypas, director of NSF’s Office of Advanced Cyberinfrastructure. “With support from NVIDIA and NSF, we’re not only enabling today’s research, we’re laying the groundwork for a national AI network to drive tomorrow’s discoveries.”
      Surya is part of a larger effort championed and supported by NASA’s Office of the Chief Science Data Officer and Heliophysics Division, the NSF , and partnering universities to advance NASA’s scientific missions through innovative data science and AI models. Surya’s AI architecture was jointly developed by the Interagency Implementation and Advanced Concepts Team (IMPACT) under the Office of Data Science and Informatics  at NASA’s Marshall Space Flight Center in Huntsville, Alabama; IBM; and a collaborative science team.
      The science team, assembled by NASA Headquarters, consisted of experts from the Southwest Research Institute in San Antonio, Texas; the University of Alabama in Huntsville in Huntsville, Alabama; the University of Colorado Boulder in Boulder, Colorado; Georgia State University in Atlanta, Georgia; Princeton University in Princeton, New Jersey; NASA’s SMD’s Heliophysics Division; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Jet Propulsion Laboratory in Pasadena, California; and the SETI Institute in Mountain View, California.
      For a behind-the-scenes dive into Surya’s architecture, industry and academic collaborations, challenges behind developing the model, read the blog post on NASA’s Science Data Portal:
      https://science.data.nasa.gov/features-events/inside-surya-solar-ai-model
      For more information about NASA’s strategy of developing foundation models for science, visit:
      https://science.nasa.gov/artificial-intelligence-science
      Share








      Details
      Last Updated Aug 20, 2025 Related Terms
      Science & Research Artificial Intelligence (AI) Heliophysics Solar Dynamics Observatory (SDO) The Sun The Sun & Solar Physics Explore More
      3 min read Sun at the Center: Teacher Ambassadors Bring Heliophysics to Classrooms Nationwide


      Article


      20 hours ago
      5 min read NASA-funded Compact Radar Drives Big Changes in Airborne and Suborbital Radar Capabilities


      Article


      23 hours ago
      31 min read Summary of the 2025 GEDI Science Team Meeting


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Artificial Intelligence for Science


      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


      Open Science at NASA


      NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


      Humans In Space



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...