Jump to content

Printed Engines Propel the Next Industrial Revolution


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A 3D printer at RPM Innovations’ facility additively manufactures a funnel-shaped aerospike rocket engine nozzle
A laser powder directed energy deposition (LP-DED) 3D printer at RPM Innovations’ facility additively manufactures a large-scale aerospike rocket engine nozzle from one of Elementum 3D’s specialized, 3D-printable aluminum alloys.
RPM Innovations Inc.

In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.

Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.

The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.

An animated gif of a rocket firing on a test stand
A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at Marshall Space Flight Center.
Credit: NASA

NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.

Meanwhile, a team at NASA’s Marshall Space Flight Center in Huntsville, Alabama, was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.

The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Axiom Mission 4, or Ax-4, crew will launch aboard a SpaceX Dragon spacecraft to the International Space Station from NASA’s Kennedy Space Center in Florida. From left to right: ESA (European Space Agency) astronaut Sławosz Uznański-Wiśniewski of Poland, former NASA astronaut Peggy Whitson, ISRO (Indian Space Research Organization) astronaut Shubhanshu Shukla, and Tibor Kapu of Hungary.Credit: Axiom Space NASA will join a media teleconference hosted by Axiom Space at 10:30 a.m. EDT, Tuesday, May 20, to discuss the launch of Axiom Mission 4 (Ax-4), the fourth private astronaut mission to the International Space Station.
      Briefing participants include:
      Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space Sarah Walker, director, Dragon mission management, SpaceX Sergio Palumberi, mission manager, ESA (European Space Agency) Aleksandra Bukała, project manager, head of strategy and international cooperation, POLSA (Polish Space Agency) Orsolya Ferencz, ministerial commissioner of space research, HUNOR (Hungarian to Orbit) To join the call, media must register with Axiom Space by 12 p.m., Monday, May 19, at:
      https://bit.ly/437SAAh
      The Ax-4 launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket is targeted no earlier than 9:11 a.m., Sunday, June 8, from NASA’s Kennedy Space Center in Florida.
      During the mission aboard the space station, a four-person multi-national crew will complete about 60 research experiments developed for microgravity in collaboration with organizations across the globe.
      Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
      The first private astronaut mission to the station, Axiom Mission 1, lifted off in April 2022 for a 17-day mission aboard the orbiting laboratory. The second private astronaut mission to the station, Axiom Mission 2, also was commanded by Whitson and launched in May 2023 for eight days in orbit. The most recent private astronaut mission, Axiom Mission 3, launched in January 2024; the crew spent 18 days docked to the space station.
      The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/commercial-space
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Anna Schneider
      Johnson Space Center, Houston
      281-483-5111
      anna.c.schneider@nasa.gov
      Alexis DeJarnette
      Axiom Space, Houston
      alexis@axiomspace.com
      Share
      Details
      Last Updated May 14, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Commercial Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity rover appears as a dark speck in this contrast-enhanced view captured on Feb. 28, 2025, by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter. Trailing Curiosity are the rover’s tracks, which can linger on the Martian surface for months before being erased by the wind. NASA/JPL-Caltech/University of Arizona The image marks what may be the first time one of the agency’s Mars orbiters has captured the rover driving.
      NASA’s Curiosity Mars rover has never been camera shy, having been seen in selfies and images taken from space. But on Feb. 28 — the 4,466th Martian day, or sol, of the mission — Curiosity was captured in what is believed to be the first orbital image of the rover mid-drive across the Red Planet.
      Taken by the HiRISE (High-Resolution Imaging Science Experiment) camera aboard NASA’s Mars Reconnaissance Orbiter, the image shows Curiosity as a dark speck at the front of a long trail of rover tracks. Likely to last for months before being erased by wind, the tracks span about 1,050 feet (320 meters). They represent roughly 11 drives starting on Feb. 2 as Curiosity trucked along at a top speed of 0.1 mph (0.16 kph) from Gediz Vallis channel on the journey to its next science stop: a region with potential boxwork formations, possibly made by groundwater billions of years ago.
      How quickly the rover reaches the area depends on a number of factors, including how its software navigates the surface and how challenging the terrain is to climb. Engineers at NASA’s Jet Propulsion Laboratory in Southern California, which leads Curiosity’s mission, work with scientists to plan each day’s trek.
      “By comparing the time HiRISE took the image to the rover’s commands for the day, we can see it was nearly done with a 69-foot drive,” said Doug Ellison, Curiosity’s planning team chief at JPL.
      Designed to ensure the best spatial resolution, HiRISE takes an image with the majority of the scene in black and white and a strip of color down the middle. While the camera has captured Curiosity in color before, this time the rover happened to fall within the black-and-white part of the image.
      In the new image, Curiosity’s tracks lead to the base of a steep slope. The rover has since ascended that slope since then, and it is expected to reach its new science location within a month or so.
      More About Curiosity and MRO
      NASA’s Curiosity Mars rover was built at JPL, which is managed for the agency by Caltech in Pasadena, California. JPL manages both the Curiosity and Mars Reconnaissance Orbiter missions on behalf of NASA’s Science Mission Directorate in Washington as part of the agency’s Mars Exploration Program portfolio. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado.
      For more about the missions, visit:
      science.nasa.gov/mission/msl-curiosity
      science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2025-059
      Share
      Details
      Last Updated Apr 24, 2025 Related Terms
      Mars Science Laboratory (MSL) Curiosity (Rover) Mars Mars Reconnaissance Orbiter (MRO) Explore More
      5 min read Eye on Infinity: NASA Celebrates Hubble’s 35th Year in Orbit
      In celebration of the Hubble Space Telescope’s 35 years in Earth orbit, NASA is releasing…
      Article 1 day ago 3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 7 days ago 6 min read NASA’s Perseverance Mars Rover Studies Trove of Rocks on Crater Rim
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      A new wave of ocean scientists has embarked on an extraordinary six-week voyage aboard a majestic tall ship that set sail today from Norway bound for southern France. But this is no ordinary journey.
      Thanks to this ESA Advanced Ocean Training Course, these upcoming researchers will be taking a deep dive into ocean science, empowering them with skills to harness satellite data for research, innovation and sustainable development – and preparing them to become tomorrow’s leaders and ambassadors for ocean science.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Robotics teams gather on the main floor of the 2025 Aerospace Valley FIRST Robotics Competition at Eastside High School in Lancaster, California, adjusting and testing the functions of their robots, on April 3, 2025NASA/Genaro Vavuris A group of attendees to the 2025 Aerospace Valley FIRST Robotics Competition gather outside Eastside High School’s gymnasium in Lancaster, California, to watch an F/A-18 from NASA’s Armstrong Flight Research Center, in Edwards, California, fly over the school to kick off the competition, on April 3, 2025.NASA/Genaro Vavuris Jose Vasquez, engineering technician at NASA’s Armstrong Flight Research Center at Edwards, California, machines parts for a robot inside NASA’s mobile machine shop at the 2025 Aerospace Valley FIRST Robotics Competition in Lancaster, California, on April 3, 2025.NASA/Genaro Vavuris Students from Eagle Robotics, Team 399, supported by volunteers from NASA’s Armstrong Flight Research Center in Edwards, California, adjust their robot during the 2025 Aerospace Valley FIRST Robotics Competition in Lancaster, California, on April 3, 2025.NASA/Genaro Vavuris When young minds come together to test their knowledge and creativity in technology and innovation, the results are truly inspiring. In its sixth year, Aerospace Valley Regional FIRST Robotics Competition at East High School in Lancaster, California, proved to be another success. During three action-packed days, hundreds of students from around the world showcased their skills in building and programming robots designed to tackle real-world challenges. Volunteers from NASA’s Armstrong Flight Research Center in Edwards, California, played a key role, mentoring students and sharing expertise to guide the next generation of engineers.
      The Aerospace Valley Regional was started with NASA’s support through the Robotics Alliance Project, which has helped expand robotics programs nationwide. As part of the project, NASA Armstrong supports five local teams and fosters innovation and mentorship for young minds. “It’s more than just a game – it’s a launchpad for future innovators,” said David Voracek, NASA Armstrong’s chief technologist, who has volunteered for 20 years and is the primary logistics manager.
      Brad Flick, NASA Armstrong center director, toured the venue and talked to students, highlighting NASA’s continued commitment to inspiring the next generation of engineers and innovators. The event kicked off with an exciting F/A-18 flyover by NASA Armstrong research test pilots Nils Larson and James Less.
      Throughout the competition, NASA volunteers – judges, scorers, and machinists – offered guidance and ensured smooth operations. The mobile shop supported students by repairing and fabricating parts for their robots, completing 79 jobs during the event. “Almost everything we do needs to get done in minutes,” says Jose Vasquez, volunteer, and engineering technician at NASA Armstrong’s fabrication lab, who volunteered at the event.
      Beyond the competition, students engaged with industry professionals and explored career opportunities. “They don’t just build robots; they build confidence, resilience, and real-world skills alongside mentors who inspire them and volunteers who make it all possible,” Voracek said. This event showcased the talent, determination, and creativity that will shape the future of technology and innovation.
      NASA’s Robotics Alliance Project provides grants for high school teams across the country and supports FIRST Robotics competitions, encouraging students to pursue STEM careers.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactPriscila Valdezpriscila.valdez@nasa.gov Related Terms
      Aeronautics Armstrong Flight Research Center Learning Resources Next Gen STEM Explore More
      3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 17 hours ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 1 day ago 5 min read NASA Announces 31st Human Exploration Rover Challenge Winners
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Credit: NASA Jared Isaacman is set to participate in a hearing to become the next NASA administrator at 10 a.m. EDT on Wednesday, April 9, before the U.S. Senate Committee on Commerce, Science, and Transportation. The nomination hearing will take place at Russell Senate Office Building in Washington.
      The agency will stream the hearing on NASA+, and the committee will stream it on its website and YouTube channel. Learn how to watch NASA content on a variety of agency platforms, including social media.
      President Trump formally nominated Isaacman for NASA administrator on Jan. 20. The following is a statement from acting NASA Administrator Janet Petro on the nomination hearing:
      “I’m glad the Senate has scheduled a hearing to consider Jared Isaacman’s nomination as NASA administrator. Isaacman’s experience in commercial spaceflight and his commitment to advancing space capabilities align with NASA’s ongoing efforts to enhance America’s position as the global leader in space exploration. Upon confirmation, his leadership will support our work to drive American innovation, strengthen partnerships, and further the essential mission of the agency for the benefit of all.”
      Media interested in participating in the event must contact Bethany Stevens and their respective Senate media gallery to RSVP. Contact details are available on the committee’s website.
      For more information about NASA missions, visit:
      https://www.nasa.gov
      -end-
      Bethany Stevens / Cheryl Warner
      Headquarters, Washington
      202-358-1600
      bethany.c.stevens@nasa.gov / cheryl.m.warner@nasa.gov
      Share
      Details
      Last Updated Apr 07, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Leadership NASA+ View the full article
  • Check out these Videos

×
×
  • Create New...