Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      128 Air Force Reserve Professionals who will transfer into the Space Force in a full-time capacity.
      View the full article
    • By NASA
      After delivering ten NASA science and technology payloads to the near side of the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission 1 lander captured this image of a sunset from the lunar surface. Credit: Firefly Aerospace After landing on the Moon with NASA science and technology demonstrations March 2, Firefly Aerospace’s Blue Ghost Mission 1 concluded its mission March 16. Analysis of data returned to Earth from the NASA instruments continues, benefitting future lunar missions.
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly’s Blue Ghost lunar lander delivered 10 NASA science and technology instruments to the Mare Crisium basin on the near side of the Moon. During the mission, Blue Ghost captured several images and videos, including imaging a total solar eclipse and a sunset from the surface of the Moon. The mission lasted for about 14 days, or the equivalent of one lunar day, and multiple hours into the lunar night before coming to an end.
      “Firefly’s Blue Ghost Mission 1 marks the longest surface duration commercial mission on the Moon to date, collecting extraordinary science data that will benefit humanity for decades to come,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “With NASA’s CLPS initiative, American companies are now at the forefront of an emerging lunar economy that lights the way for the agency’s exploration goals on the Moon and beyond.”
      All 10 NASA payloads successfully activated, collected data, and performed operations on the Moon. Throughout the mission, Blue Ghost transmitted 119 gigabytes of data back to Earth, including 51 gigabytes of science and technology data. In addition, all payloads were afforded additional opportunities to conduct science and gather more data for analysis, including during the eclipse and lunar sunset.
      “Operating on the Moon is complex; carrying 10 payloads, more than has ever flown on a CLPS delivery before, makes the mission that much more impressive,” said Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters. “Teams are eagerly analyzing their data, and we are extremely excited for the expected scientific findings that will be gained from this mission.”
      Among other achievements, many of the NASA instruments performed first-of-their-kind science and technology demonstrations, including:
      The Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity  is now the deepest robotic planetary subsurface thermal probe, drilling  up to 3 feet and providing a first-of-its kind demonstration of robotic thermal measurements at varying depths. The Lunar GNSS Receiver Experiment acquired and tracked Global Navigation Satellite Systems (GNSS) signals, from satellite networks such as GPS and Galileo, for the first time enroute to and on the Moon’s surface. The LuGRE payload’s record-breaking success indicates that GNSS signals could complement other navigation methods and be used to support future Artemis missions. It also acts as a stepping stone to future navigation systems on Mars.  The Radiation Tolerant Computer successfully operated in transit through Earth’s Van Allen belts, as well as on the lunar surface into the lunar night, verifying solutions to mitigate radiation effects on computers that could make future missions safer for equipment and more cost effective. The Electrodynamic Dust Shield successfully lifted and removed lunar soil, or regolith, from surfaces using electrodynamic forces, demonstrating a promising solution for dust mitigation on future lunar and interplanetary surface operations. The Lunar Magnetotelluric Sounder successfully deployed five sensors to study the Moon’s interior by measuring electric and magnetic fields. The instrument allows scientists to characterize the interior of the Moon to depths up to 700 miles, or more than half the distance to the Moon’s center. The Lunar Environment heliospheric X-ray Imager captured a series of X-ray images to study the interaction of the solar wind and Earth’s magnetic field, providing insights into how space weather and other cosmic forces surrounding Earth affect the planet.  The Next Generation Lunar Retroreflector successfully reflected and returned laser light from two Lunar Laser Ranging Observatories, returning measurements allowing scientists to precisely measure the Moon’s shape and distance from Earth, expanding our understanding of the Moon’s inner structure.  The Stereo Cameras for Lunar Plume-Surface Studies instrument captured about 9,000 images during the spacecraft’s lunar descent and touchdown on the Moon, providing insights into the effects engine plumes have on the surface. The payload also operated during the lunar sunset and into the lunar night. The Lunar PlanetVac was deployed on the lander’s surface access arm and successfully collected, transferred, and sorted lunar soil using pressurized nitrogen gas, demonstrating a low-cost, low-mass solution for future robotic sample collection. The Regolith Adherence Characterization instrument examined how lunar regolith sticks to a range of materials exposed to the Moon’s environment, which can help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive lunar dust or regolith. The data captured will benefit humanity in many ways, providing insights into how space weather and other cosmic forces may impact Earth. Establishing an improved awareness of the lunar environment ahead of future crewed missions will help plan for long-duration surface operations under Artemis.
      To date, five vendors have been awarded 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the lunar South Pole and far side.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Alise Fisher 
      Headquarters, Washington
      202-617-4977
      alise.m.fisher@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Blue Ghost (lander) Johnson Space Center Kennedy Space Center NASA Headquarters View the full article
    • By USH
      On March 26, 2020, a French astronomer Mark Carlotto used a telescope to capture a video showing the moon at night. Dr. M. Carlotto is a specialist in digital video analysis of space objects. The video shows three objects rising above the Moon’s limb, flying across the lunar surface and disappearing in the Moon’s shadow. 

      The fact that some of these objects are so clearly visible and close enough to the moon to be able to cast noticeable shadows immediately suggests that they are quite large. Using the large Endymion crater as a benchmark, the sizes of the objects were determined. 

      The size of the object flying over Endymion is about 5 miles long and about 1 to 3 miles wide. The other two objects appear to be comparable in size. 
      By measuring the displacement of the object it appears that the object is traveling at about 31 mps. It is traveling more than 30 times faster than if it were in lunar orbit. 

      A paper was recently published that attempts to prove that the original video is a fake. Arxiv.org analyzed the video (not included in the analysis) but extracted and provided three images of the recorded objects for examination, as seen above, and they then conducted calculations to verify its authenticity. 
      Despite government and space agency denials of UFO existence, photographic evidence and subsequent analysis suggest the presence of large extraterrestrial craft near the Moon and elsewhere in space.View the full article
    • By Space Force
      The Space Force landed the X-37B at Vandenberg Space Force Base, California, to exercise its rapid ability to launch and recover its systems across multiple sites. X-37B’s Mission 7 was the first launch on a SpaceX Falcon Heavy Rocket to a Highly Elliptical Orbit.

      View the full article
    • By NASA
      NASA’s SpaceX Crew-9 mission with agency astronauts Nick Hague, Butch Wilmore, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov is preparing to return to Earth following their science mission aboard the International Space Station. Hague, Williams, and Wilmore completed more than 900 hours of research between over 150 unique scientific experiments and technology demonstrations during their stay aboard the orbiting laboratory.
      Here’s a look at some scientific milestones accomplished during their journey:
      Mighty microalgae
      NASA astronaut Nick Hague processes samples for Arthrospira C, an investigation from ESA (European Space Agency) that transplants and grows Arthrospiramicro-algae eboard the International Space Station. These organisms conduct photosynthesis and could be used to convert carbon dioxide exhaled by crew members into oxygen, helping maintain a safe atmosphere inside spacecraft. Arthrospira also could provide fresh food on long-duration space missions.
      NASA Improving astronaut exercise
      Researchers are testing the European Enhanced Exploration Exercise Device (E4D), a modular device that combines cycling, rowing, and resistance exercises to help keep crews healthy on long-duration missions. A single, small device effective at countering bone and muscle loss and improving cardiovascular health is needed for use on future spacecraft such as the Gateway lunar space station. NASA astronaut Butch Wilmore works on installing the device aboard the International Space Station ahead of its evaluation.
      NASA Watering the garden
      This red romaine lettuce growing in the International Space Station’s Advanced Plant Habitat is part of Plant Habitat-07, a study of how different moisture levels affect the microbial communities in plants and water. Results could show how less-than-ideal conditions affect plant growth and help scientists design systems to produce safe and nutritious food for crew members on future space journeys.
      NASA Packing it in
      Packed bed reactors are systems that “pack” materials such as pellets or beads inside a structure to increase contact between any liquids and gasses flowing through it. NASA astronaut Suni Williams installs hardware for the Packed Bed Reactor Experiment: Water Recovery Series (PBRE-WRS) investigation, which examines how gravity affects these systems aboard the International Space Station. Results could help scientists design better reactors for water recovery, thermal management, fuel cells, and other applications.
      NASA Fueling the flames
      During the Residence Time Driven Flame Spread (SOFIE-RTDFS) investigation at the International Space Station, this sheet of clear acrylic plastic burns at higher oxygen levels and half the standard pressure of Earth’s atmosphere. From left to right, the image sequence shows a side and top view of the fuel and the oxygen slowly diffusing into the flame. Studying the spread of flames in microgravity could help improve safety on future missions.
      NASA Monitoring microbes in space
      During a recent spacewalk, NASA astronaut Butch Wilmore swabbed the exterior of the International Space Station for ISS External Microorganisms, an investigation exploring whether microorganisms leave the spacecraft through its vents and, if so, which ones survive. Humans carry microorganisms along with them wherever they go, and this investigation could help scientists take steps to limit microbial spread to places like the Moon and Mars.
      NASA A hearty workout
      NASA astronaut Nick Hague exercises on the International Space Station’s Advanced Resistive Exercise Device while wearing the Bio-Monitor vest and headband. This set of garments contains sensors that unobtrusively collect data such as heart rate, breathing rate, blood pressure, and temperature. The data supports studies on human health, including Vascular Aging, a CSA (Canadian Space Agency) investigation that monitors cardiovascular function in space.
      NASA On-demand medical devices
      NASA astronaut Butch Wilmore works with hardware for InSPA Auxilium Bioprinter, a study that tests 3D printing of an implantable medical device that could facilitate recovery from peripheral nerve damage, a type of injury that can cause sensory and motor issues. In microgravity, this manufacturing technique produces higher-quality devices that may perform better, benefitting crew members on future long-duration missions and patients back home.
      NASA Could wood be better
      A deployer attached to the International Space Station’s Kibo laboratory module launches LignoSat into space. JAXA (Japan Aerospace Exploration Agency) developed the satellite to test using wood as a more sustainable alternative to conventional satellite materials. Researchers previously exposed different woods to space and chose magnolia as the best option for the study, including sensors to evaluate the wood’s strain and its response to temperature and radiation. Researchers also are monitoring whether Earth’s geomagnetic field interferes with the satellite’s data transmission.
      NASA Making microbes in space
      NASA astronaut Suni Williams poses with bacteria and yeast samples for Rhodium Biomanufacturing 03, part of an ongoing examination of microgravity’s effects on biomanufacturing engineered bacteria and yeast aboard the International Space Station. Microgravity causes changes in microbial cell growth, cell structure, and metabolic activity that can affect biomanufacturing processes. This investigation could clarify the extent of these effects and advance the use of microbes to make food, pharmaceuticals, and other products in space, reducing the cost of launching equipment and consumables from Earth.
      NASA A NICER spacewalk
      The International Space Station’s Neutron star Interior Composition Explorer, or NICER, studies neutron stars, the glowing cinders left behind when massive stars explode as supernovas. NASA astronaut Nick Hague installs patches during a spacewalk to repair damage to thermal shields that block out sunlight while allowing X-rays to pass through the instrument. NICER continues to generate trailblazing astrophysics discoveries reported in hundreds of scientific papers.
      NASA Earth from every angle
      From inside the International Space Station’s cupola, NASA astronaut Butch Wilmore photographs landmarks on Earth approximately 260 miles (418 kilometers) below. Crew members have taken millions of images of Earth from the space station for Crew Earth Observations, creating one of the longest-running records of how our planet changes over time. These images support a variety of research, including studies of phenomena such as flooding and fires, atmospheric processes affected by volcanic eruptions, urban growth, and land use.
      NASA An out-of-this-world sunrise
      This photograph captures an orbital sunrise above the lights of Rio de Janeiro and Sao Paulo as the International Space Station orbits above Brazil. This image is one of the millions of photographs taken by crew members for Crew Earth Observations. These images teach us more about our home planet, and studies show that taking them improves the mental well-being of crew members. Many spend much of their free time pursuing shots that, like this one, are only possible from space.
      NASA Vital vitamins
      The BioNutrients investigation demonstrates technology to produce nutrients during long-duration space missions using engineered microbes like yeast. Food stored for long periods can lose vitamins and other nutrients, and this technology could provide a way to make supplements on demand. NASA astronaut Suni Williams prepares specially designed growth packets for the investigation aboard the International Space Station.
      NASA Blowing in the solar wind
      The International Space Station’s robotic hand, Dextre, attached to the Canadarm2 robotic arm, moves hardware into position for the COronal Diagnostic EXperiment, or CODEX. This investigation examines solar wind and how it forms using a solar coronagraph, which blocks out bright light from the Sun to reveal details in its outer atmosphere or corona. Results could help scientists understand the heating and acceleration of the solar wind and provide insight into the source of the energy that generates it.
      NASA Can you hear me now?
      Roscosmos cosmonaut Aleksandr Gorbunov conducts a hearing test in the relative quiet of the International Space Station’s Quest airlock. Crew members often serve as test subjects for research on how spaceflight affects hearing and vision, the immune and cardiovascular systems, and other bodily functions. This research supports the development of ways to prevent or mitigate these effects.
      NASA Exposing materials to space
      Euro Material Ageing, an ESA (European Space Agency) investigation, studies how certain materials age when exposed to the harsh space environment. Findings could advance design for spacecraft and satellites, including improved thermal control, as well as the development of sensors for research and industrial applications. NASA astronaut Suni Williams installs the experiment into the Nanoracks Bishop airlock for transport to the outside of the International Space Station.
      NASA Sending satellites into space
      NASA astronauts Don Pettit and Butch Wilmore remove a small satellite deployer from an airlock on the International Space Station. The deployer had released several CubeSats into Earth orbit including CySat-1, a remote sensor that measures soil moisture, and DORA, a receiver that could provide affordable and accurate communications among small spacecraft.
      NASA Robotic relocation
      The Responsive Engaging Arms for Captive Care and Handling demonstration (Astrobee REACCH) uses the International Space Station’s Astrobee robots to test technology for capturing objects of any geometry or material orbiting in space. This ability could enable satellite servicing and movement to maximize the lifespan of these tools and removal of space debris that could damage satellites providing services to the people of Earth. NASA astronaut Suni Williams checks out an Astrobee fitted with tentacle-like arms and adhesive pads for the investigation.
      NASA Arms to hold
      As part of a program called High school students United with NASA to Create Hardware, or HUNCH, NASA astronaut Nick Hague demonstrates the HUNCH Utility Bracket, a student-designed tool to hold and position cameras, tablets, and other equipment that astronauts use daily. Currently, crew members on the International Space Station use devices called Bogen Arms, which have experienced wear and tear and need to be replaced.
      NASA A Dragon in flight
      The SpaceX Dragon spacecraft fires its thrusters after undocking from the International Space Station as it flies 260 miles (418 kilometers) above the Pacific Ocean west of Hawaii. NASA’s commercial resupply services deliver critical scientific studies, hardware, and supplies to the station.
      NASA Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      International Space Station News
      View the full article
  • Check out these Videos

×
×
  • Create New...