Members Can Post Anonymously On This Site
Sentinel-2C in the Vega launch tower
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
By Beth Ridgeway
NASA’s Student Launch competition celebrated its 25th anniversary on May 4, just north of NASA’s Marshall Space Flight Center in Huntsville, Alabama, bringing together more than 980 middle school, high school, college, and university students from across the U.S. to showcase and launch their high-powered rocketry designs.
The event marked the conclusion of the nine-month challenge where teams designed, built, and launched more than 50 rockets carrying scientific payloads—trying to achieve altitudes between 4,000 and 6,000 feet before executing a successful landing and payload mission.
“This is really about mirroring the NASA engineering design process,” Kevin McGhaw, director of NASA’s Office of STEM Engagement Southeast Region, said. “It gives students hands-on experience not only in building and designing hardware, but in the review and testing process. We are helping to prepare and inspire students to get out of classroom and into the aerospace industry as a capable and energizing part of our future workforce.”
NASA announced James Madison University as the overall winner of the agency’s 2025 Student Launch challenge, followed by North Carolina State University, and The University of Alabama in Huntsville. A complete list of challenge winners can be found on the agency’s Student Launch webpage.
Participants from James Madison University – the overall winner of the 2025 NASA Student Launch competition – stand around their team’s high-powered rocket as it sits on the pad before launching on May 4 event. NASA/Krisdon Manecke Each year, a payload challenge is issued to the university teams, and this year’s task took inspiration from the agency’s Artemis missions, where NASA will send astronauts to explore the Moon for scientific discovery, economic benefit, and to build the foundation for the first crewed missions to Mars. Teams were challenged to include sensor data from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” had to relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.
Student Launch is one of NASA’s seven Artemis Student Challenges – activities that connect student ingenuity with NASA’s work returning to the Moon under Artemis in preparation for human exploration of Mars.
The competition is managed by Marshall’s Office of STEM Engagement. Additional funding and support are provided by the Office of STEM Engagement’s Next Generation STEM project, NASA’s Marshall Space Flight Center, the agency’s Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space, and Bastion Technologies Inc.
To watch the full virtual awards ceremony, please visit NASA Marshall’s YouTube channel.
For more information about Student Launch, visit:
https://www.nasa.gov/learning-resources/nasa-student-launch/
Share
Details
Last Updated Jun 16, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Find Your Place For Colleges & Universities Learning Resources Explore More
3 min read NASA Announces Teams for 2025 Student Launch Challenge
Article 9 months ago 4 min read 25 Years Strong: NASA’s Student Launch Competition Accepting 2025 Proposals
Article 10 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Students from Tropico Middle School in Rosamond, California, build their own paper planes as part of a project during NASA Aero Fair on April 9, 2025.NASA/Genaro Vavuris A new generation of aerospace explorers will soon embark on a hands-on summer experience focusing on careers in science, mathematics, engineering, and technology (STEM). This month, NASA’s Armstrong Flight Research Center in Edwards, California, and the Flight Test Museum Foundation will launch the 2025 Junior Test Pilot School.
Held at Blackbird Airpark and Joe Davies Heritage Airpark in Palmdale, California, this six-week program invites elementary-aged students to step into the shoes of test pilots and engineers from 9 a.m. to 2 p.m. Mondays through Fridays, June 16 through July 25. Registration is free through participating school districts and the Flight Test Museum. Students will have direct access to legendary aircraft such as A-12, SR-71, U-2, F-86 Sabre, and NASA Boeing 747 Space Shuttle Carrier Aircraft.
The Junior Test Pilot School combines authentic NASA-designed curriculum, immersive aerospace activities, and direct engagement with engineers, test pilots, and scientists to inspire future aerospace professionals in the Antelope Valley – home to one of the nation’s highest concentrations of STEM careers.
“This program offers more than a glimpse into aerospace, it provides students a hands-on opportunity to solve real-world problems and see themselves in future STEM roles,” said Dr. Amira Flores, program integration manager for NASA’s California Office of STEM Engagement.
Daily lessons cover eight core modules: flight principles, stealth engineering, altitude effects, speed and g-force, payload impact, maneuverability, reconnaissance design, and jet engine systems.
Additionally, in collaboration with NASA Armstrong’s Aero Fair program, students will be guided through the program’s Wildfire Design Challenge by a NASA volunteer. Following the engineering design process, students will collaborate to design and build a prototype of an aerial vehicle that suppresses wildfires.
“Our junior test pilots learn to analyze the aircraft to figure out why they were designed the way they are and think like an engineer,” said Lisa Sheldon Brown, director of education at the Flight Test Museum. “Research shows that academic trajectory is set by fifth grade, making this the critical window to inspire STEM interest and career awareness.”
The program is delivered in partnership with the City of Palmdale and is supported by industry sponsors, including Lockheed Martin and Northrop Grumman. These partners not only provide funding and volunteers but also elevate career exposure by introducing students to diverse aerospace professionals within the region.
NASA Armstrong is a hub of aeronautical innovation and STEM workforce development in the Antelope Valley. Through programs like Aero Fair and partnerships like Junior Test Pilots School, Armstrong inspires and equips the next generation of engineers, pilots, and scientists.
The Flight Test Museum Foundation preserves the legacy and promotes the future of aerospace through education programs and historical preservation at the Blackbird Airpark and forthcoming Flight Test Museum at Edwards Air Force Base in Edwards, California.
For more about NASA’s Armstrong Flight Research Center, visit:
https://www.nasa.gov/armstrong
– end –
Elena Aguirre
Armstrong Flight Research Center, Edwards, California
(661) 276-7004
elena.aguirre@nasa.gov
Dede Dinius
Armstrong Flight Research Center, Edwards, California
(661) 276-5701
darin.l.dinius@nasa.gov
Explore More
5 min read NASA F-15s Validate Tools for Quesst Mission
Article 2 days ago 4 min read NASA Student Challenge Prepares Future Designers for Lunar Missions
Article 2 days ago 2 min read From Garment Industry to NASA: Meet Systems Engineer Daniel Eng
Article 6 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
The SpaceX Dragon spacecraft carrying the Axiom Mission 3 crew is pictured approaching the International Space Station on Jan. 20, 2024.Credit: NASA NASA, Axiom Space, and SpaceX are targeting 8:22 a.m. EDT, Tuesday, June 10, for launch of the fourth private astronaut mission to the International Space Station, Axiom Mission 4.
The mission will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The crew will travel to the orbiting laboratory on a new SpaceX Dragon spacecraft after launching on the company’s Falcon 9 rocket. The targeted docking time is approximately 12:30 p.m., Wednesday, June 11.
NASA will stream live coverage of launch and arrival activities on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
NASA’s mission responsibility is for integrated operations, which begins during the spacecraft’s approach to the space station, continues during the crew’s approximately two-week stay aboard the orbiting laboratory while conducting science, education, and commercial activities, and concludes once the spacecraft exits the station.
Peggy Whitson, former NASA astronaut and director of human spaceflight at Axiom Space, will command the commercial mission, while ISRO (Indian Space Research Organisation) astronaut Shubhanshu Shukla will serve as pilot. The two mission specialists are ESA (European Space Agency) project astronaut Sławosz Uznański-Wiśniewski of Poland and Tibor Kapu of Hungary.
As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
The private mission also carries the first astronauts from Poland and Hungary to stay aboard the space station.
NASA will join the mission prelaunch teleconference hosted by Axiom Space (no earlier than one hour after completion of the Launch Readiness Review) at 6 p.m., Monday, June 9, with the following participants:
Dana Weigel, manager, International Space Station Program, NASA Allen Flynt, chief of mission services, Axiom Space William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX Arlena Moses, launch weather officer, 45th Weather Squadron, U.S. Space Force To join the teleconference, media must register with Axiom Space by 12 p.m., Sunday, June 8, at:
https://bit.ly/4krAQHK
NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):
Tuesday, June 10
6:15 a.m. – Axiom Space and SpaceX launch coverage begins.
7:25 a.m. – NASA joins the launch coverage on NASA+.
8:22 a.m. – Launch
NASA will end coverage following orbital insertion, which is approximately 15 minutes after launch. As it is a commercial launch, NASA will not provide a clean launch feed on its channels.
Wednesday, June 11
10:30 a.m. – Arrival coverage begins on NASA+, Axiom Space, and SpaceX channels.
12:30 p.m. – Targeted docking to the space-facing port of the station’s Harmony module.
Arrival coverage will continue through hatch opening and welcome remarks.
All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information.
The International Space Station is a springboard for developing a low Earth economy. NASA’s goal is to achieve a strong economy off the Earth where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit provides the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.
Learn more about NASA’s commercial space strategy at:
https://www.nasa.gov/commercial-space
-end-
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Anna Schneider
Johnson Space Center, Houston
281-483-5111
anna.c.schneider@nasa.gov
Share
Details
Last Updated Jun 04, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Private Astronaut Missions Commercial Space Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Kennedy Space Center View the full article
-
By NASA
NASA/Bill Ingalls President Donald Trump speaks inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, following the launch of NASA’s SpaceX Demo-2 mission on May 30, 2020. The mission was the first crewed launch of the SpaceX Crew Dragon spacecraft and Falcon 9 rocket to the International Space Station as part of the agency’s Commercial Crew Program. This marked the first time American astronauts launched on an American rocket from American soil to low-Earth orbit since the conclusion of the Space Shuttle Program in 2011.
Image credit: NASA/Bill Ingalls
View the full article
-
By NASA
NASA Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification Testing
Verifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering Test
Teams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications Testing
Integrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration Test
Teams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End Test
Test to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress Rehearsal
Teams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.