Jump to content

Recommended Posts

Posted
The world is full of mysterious places, and Vottovaara Mountain in Russia's Republic of Karelia is one of them. This site has been revered for thousands of years by ancient Saami tribes and shamans, who considered it a sacred place surrounded with powerful energy. 

Mountain%20Vottovaara%20ancient%20mysteries.png
Image credit: Universe Inside You

Vottovaara is home to numerous strange megalithic structures and ruins that many believe couldn't have formed naturally. Among these are around 1,600 sacred stones, known as "seids," arranged in a puzzling pattern. These stones, often unusually shaped, are precariously balanced on small rocks in ways that defy simple explanations. While scientists suggest that this was the result of natural processes during the Ice Age, the sheer number and precision of these balanced stones challenge the idea that they occurred by chance. 

Another intriguing feature of Vottovaara is a structure referred to as "the well," which locals believe to be an ancient, man-made water reservoir. 

As you climb Vottovaara, you'll notice an eerie transformation in the trees. None of the trees on the summit are older than a few decades, and while young pines and firs start growing normally, they soon begin to twist and deform in bizarre ways. This phenomenon is thought to be caused by some unknown energy affecting the trees. 

Known as Death Mountain, Vottovaara also is believed to be connected to ancient spirits that are said to inhabit the area, adding to its aura of mystery.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The weight of the gods was crushing, their toil beyond endurance. Let the burden pass to humankind! So speak the oldest verses carved into clay, a fragment from the Atrahasis tale of Mesopotamia. Yet what if these divine figures were not simply legends? What if the stories hint at something far older and stranger than we have allowed ourselves to believe? The name Anunnaki comes from the etched symbols of Sumerian records, their lines recounting the deeds of deities who shaped the world and watched over the Earth. 

      From the cradle of ancient Mesopotamia comes a story older than any empire, etched into clay tablets and whispered through time: the tale of the Anunnaki. Were they gods, symbols, or something far stranger visitors from beyond the stars who shaped human civilization? The myths of Sumer speak of creation, rebellion, giants, and a great flood. But when paired with the ancient astronaut theory, these legends take on a new dimension, one that could rewrite human history.  
      Who were the Anunnaki? In the ancient Sumerian texts of Mesopotamia, they are described as the offspring of An, the sky god, and Ki, the earth goddess. Their names appear across the Atrahasis epic, the Enuma Elish, the Epic of Gilgamesh, and the Sumerian King List, etched into clay tablets more than 4,000 years ago. 
      To mainstream historians, the Anunnaki are mythological gods. Yet in the ancient astronaut theory, they were real beings, extraterrestrial visitors who shaped early civilization. 
      Author Zecharia Sitchin popularized the idea that the Anunnaki came from Nibiru, a hidden “twelfth planet” on a long, elliptical orbit. According to his interpretation of Sumerian records, the Anunnaki faced an environmental crisis. Their planet’s atmosphere was failing, and the solution they sought was gold, which could be ground into particles and suspended as a shield. 
      This quest for survival brought them to Earth more than 400,000 years ago. They mined resources, altered life, and may even have engineered humanity itself. 
      The tablets describe how the lesser gods, the Igigi, were forced into back-breaking labor until they rebelled. To replace them, the Anunnaki created humans. 
      In myth, mankind was formed from clay mixed with divine blood. In Sitchin’s interpretation, this was genetic engineering: the fusion of Anunnaki DNA with Homo erectus. The first prototype was Adamu, a name that echoes the biblical Adam. 
      The Sumerian “Edin,” later mirrored in the Hebrew Eden, may not have been a paradise garden but an Anunnaki laboratory outpost. 
      Two Anunnaki brothers shaped humanity’s destiny: Enki – the god of wisdom and waters, often seen as humanity’s ally, granting knowledge. Enlil – stern and authoritarian, seeking control and fearing that humans might grow too powerful. Their rivalry runs through Mesopotamian myth, influencing stories of divine punishment, survival, and human struggle. 
      Over time, some Anunnaki defied the rules and took human women as partners. Their offspring were the Nephilim, giants and “mighty men of renown.” The Book of Enoch calls their fathers the Watchers, led by Shemyaza.  
      According to the stories, these hybrids grew violent, corrupted the world, and became uncontrollable. The solution was drastic: a great flood to wipe the Earth clean. 
      The Atrahasis epic, the story of Utnapishtim in the Epic of Gilgamesh, and the biblical Noah all describe the same event: a chosen man warned by a god, a vessel built to preserve life, animals carried aboard, and birds released to find land. Humanity survived, but weaker, with shorter lifespans, and forever changed. 
      Supporters of the ancient astronaut theory believe the Anunnaki left traces in stone: 
      Mesopotamian ziggurats – described as “bonds between heaven and earth,” possibly landing platforms. 
      The Great Pyramid of Giza – aligned to true north, massive in scale, theorized as a power plant or beacon rather than a tomb. 
      Megalithic monuments worldwide – stone circles, cyclopean walls, and sacred sites possibly linked to Anunnaki influence. 
      The Sumerian King List also suggests a divine legacy, describing rulers with lifespans of thousands of years, perhaps evidence of semi-divine hybrids. 
      Mainstream archaeology sees the Anunnaki as symbolic deities, metaphors for cosmic order and human struggle. But in alternative history, they were real beings, extraterrestrial visitors from Nibiru, who shaped civilization, taught astronomy, metallurgy, agriculture, and law, and left their mark in myths and monuments that endure to this day. 
      Explore the mystery of the Anunnaki—Sumerian gods, Nibiru, genetic engineering, Nephilim, the Great Flood, and the ancient astronaut theory in the video below.
        View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An international team of astronomers has uncovered new evidence to explain how pulsing remnants of exploded stars interact with surrounding matter deep in the cosmos, using observations from NASA’s IXPE (Imaging X-ray Polarimetry Explorer) and other telescopes. 
      Scientists based in the U.S., Italy, and Spain, set their sights on a mysterious cosmic duo called PSR J1023+0038, or J1023 for short. The J1023 system is comprised of a rapidly rotating neutron star feeding off of its low-mass companion star, which has created an accretion disk around the neutron star. This neutron star is also a pulsar, emitting powerful twin beams of light from its opposing magnetic poles as it rotates, spinning like a lighthouse beacon.
      The J1023 system is rare and valuable to study because the pulsar transitions clearly between its active state, in which it feeds off its companion star, and a more dormant state, when it emits detectable pulsations as radio waves. This makes it a “transitional millisecond pulsar.” 
      An artist’s illustration depicting the central regions of the binary system PSR J1023+0038, including the pulsar, the inner accretion disc and the pulsar wind. Credit: Marco Maria Messa, University of Milan/INAF-OAB; Maria Cristina Baglio, INAF-OAB “Transitional millisecond pulsars are cosmic laboratories, helping us understand how neutron stars evolve in binary systems,” said researcher Maria Cristina Baglio of the Italian National Institute of Astrophysics (INAF) Brera Observatory in Merate, Italy, and lead author of a paper in The Astrophysical Journal Letters illustrating the new findings. 
      The big question for scientists about this pulsar system was: Where do the X-rays originate? The answer would inform broader theories about particle acceleration, accretion physics, and the environments surrounding neutron stars across the universe.
      The source surprised them: The X-rays came from the pulsar wind, a chaotic stew of gases, shock waves, magnetic fields, and particles accelerated near the speed of light, that hits the accretion disk.  
      To determine this, astronomers needed to measure the angle of polarization in both X-ray and optical light. Polarization is a measure of how organized light waves are. They looked at X-ray polarization with IXPE, the only telescope capable of making this measurement in space, and comparing it with optical polarization from the European Southern Observatory’s Very Large Telescope in Chile. IXPE launched in Dec. 2021 and has made many observations of pulsars, but J1023 was the first system of its kind that it explored. 
      NASA’s NICER (Neutron star Interior Composition Explorer) and Neil Gehrels Swift Observatory provided valuable observations of the system in high-energy light. Other telescopes contributing data included the Karl G. Jansky Very Large Array in Magdalena, New Mexico. 
      The result: scientists found the same angle of polarization across the different wavelengths.
      “That finding is compelling evidence that a single, coherent physical mechanism underpins the light we observe,” said Francesco Coti Zelati of the Institute of Space Sciences in Barcelona, Spain, co-lead author of the findings. 
      This interpretation challenges the conventional wisdom about neutron star emissions of radiation in binary systems, the researchers said. Previous models had indicated that the X-rays come from the accretion disk, but this new study shows they originate with the pulsar wind. 
      “IXPE has observed many isolated pulsars and found that the pulsar wind powers the X-rays,” said NASA Marshall astrophysicist Philip Kaaret, principal investigator for IXPE at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These new observations show that the pulsar wind powers most of the energy output of the system.”
      Astronomers continue to study transitional millisecond pulsars, assessing how observed physical mechanisms compare with those of other pulsars and pulsar wind nebulae. Insights from these observations could help refine theoretical models describing how pulsar winds generate radiation – and bring researchers one step closer, Baglio and Coti Zelati agreed, to fully understanding the physical mechanisms at work in these extraordinary cosmic systems.
      More about IXPE
      IXPE, which continues to provide unprecedented data enabling groundbreaking discoveries about celestial objects across the universe, is a joint NASA and Italian Space Agency mission with partners and science collaborators in 12 countries. IXPE is led by NASA’s Marshall Space Flight Center in Huntsville, Alabama. BAE Systems, Inc., headquartered in Falls Church, Virginia, manages spacecraft operations together with the University of Colorado’s Laboratory for Atmospheric and Space Physics in Boulder. Learn more about IXPE’s ongoing mission here:
      https://www.nasa.gov/ixpe
      Share
      Details
      Last Updated Jul 15, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      IXPE (Imaging X-ray Polarimetry Explorer) Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Explore More
      6 min read Smarter Searching: NASA AI Makes Science Data Easier to Find
      Imagine shopping for a new pair of running shoes online. If each seller described them…
      Article 6 days ago 2 min read NASA Announces Winners of 2025 Human Lander Challenge
      Article 3 weeks ago 4 min read I Am Artemis: Patrick Junen
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Searching for Ancient Rocks in the ‘Forlandet’ Flats
      NASA’s Mars Perseverance rover acquired this image of the “Fallbreen” workspace using its onboard Left Navigation Camera (Navcam). The camera is located high on the rover’s mast and aids in driving. This image was acquired on May 22, 2025 (Sol 1512, or Martian day 1,512 of the Mars 2020 mission) at the local mean solar time of 14:39:01. NASA/JPL-Caltech Written by Henry Manelski, Ph.D. student at Purdue University
      This week Perseverance continued its gradual descent into the relatively flat terrain outside of Jezero Crater. In this area, the science team expects to find rocks that could be among the oldest ever observed by the Perseverance rover — and perhaps any rover to have explored the surface of Mars — presenting a unique opportunity to understand Mars’ ancient past. Perseverance is now parked at “Fallbreen,” a light-toned bedrock exposure that the science team hopes to compare to the nearby olivine-bearing outcrop at “Copper Cove.” This could be a glimpse of the geologic unit rich in olivine and carbonate that stretches hundreds of kilometers to the west of Jezero Crater. Gaining insight into how these rocks formed could have profound implications for our constantly evolving knowledge of this region’s history. Perseverance’s recent traverses marked another notable transition. After rolling past Copper Cove, Perseverance entered the “Forlandet” quadrangle, a 1.2-square-kilometer (about 0.46 square mile, or 297-acre) area along the edge of the crater that the science team named after Forlandet National Park on the Norwegian archipelago of Svalbard. Discovered in the late 16th century by Dutch explorers, this icy set of islands captured the imagination of a generation of sailors searching for the Northwest Passage. While Perseverance is in the Forlandet quad, landforms and rock targets will be named informally after sites in and around this national park on Earth. As the rover navigates through its own narrow passes in the spirit of discovery, driving around sand dunes and breezing past buttes, we hope it channels the perseverance of the explorers who once gave these rocks their names.
      Share








      Details
      Last Updated Jun 06, 2025 Related Terms
      Blogs Explore More
      3 min read Sols 4559-4560: Drill Campaign — Searching for a Boxwork Bedrock Drill Site


      Article


      2 days ago
      2 min read Sols 4556-4558: It’s All in a Day’s (box)Work


      Article


      3 days ago
      2 min read Sols 4554–4555: Let’s Try That One Again…


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      6 min read
      NASA’s Dragonfly Mission Sets Sights on Titan’s Mysteries
      When it descends through the thick golden haze on Saturn’s moon Titan, NASA’s Dragonfly rotorcraft will find eerily familiar terrain. Dunes wrap around Titan’s equator. Clouds drift across its skies. Rain drizzles. Rivers flow, forming canyons, lakes and seas. 
      Artist’s concept of NASA’s Dragonfly on the surface of Saturn’s moon Titan. The car-sized rotorcraft will be equipped to characterize the habitability of Titan’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan. NASA/Johns Hopkins APL/Steve Gribben But not everything is as familiar as it seems. At minus 292 degrees Fahrenheit, the dune sands aren’t silicate grains but organic material. The rivers, lakes and seas hold liquid methane and ethane, not water. Titan is a frigid world laden with organic molecules. 
      Yet Dragonfly, a car-sized rotorcraft set to launch no earlier than 2028, will explore this frigid world to potentially answer one of science’s biggest questions: How did life begin?
      Seeking answers about life in a place where it likely can’t survive seems odd. But that’s precisely the point.
      “Dragonfly isn’t a mission to detect life — it’s a mission to investigate the chemistry that came before biology here on Earth,” said Zibi Turtle, principal investigator for Dragonfly and a planetary scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. “On Titan, we can explore the chemical processes that may have led to life on Earth without life complicating the picture.”
      On Earth, life has reshaped nearly everything, burying its chemical forebears beneath eons of evolution. Even today’s microbes rely on a slew of reactions to keep squirming.
      “You need to have gone from simple to complex chemistry before jumping to biology, but we don’t know all the steps,” Turtle said. “Titan allows us to uncover some of them.”
      Titan is an untouched chemical laboratory where all the ingredients for known life — organics, liquid water and an energy source — have interacted in the past. What Dragonfly uncovers will illuminate a past since erased on Earth and refine our understanding of habitability and whether the chemistry that sparked life here is a universal rule — or a wonderous cosmic fluke. 
      Before NASA’s Cassini-Huygens mission, researchers didn’t know just how rich Titan is in organic molecules. The mission’s data, combined with laboratory experiments, revealed a molecular smorgasbord — ethane, propane, acetylene, acetone, vinyl cyanide, benzene, cyanogen, and more. 
      These molecules fall to the surface, forming thick deposits on Titan’s ice bedrock. Scientists believe life-related chemistry could start there — if given some liquid water, such as from an asteroid impact.
      Enter Selk crater, a 50-mile-wide impact site. It’s a key Dragonfly destination, not only because it’s covered in organics, but because it may have had liquid water for an extended time.
      Selk crater, a 50-mile-wide impact site highlighted on this infrared image of Titan, is a key Dragonfly destination. Landing near Selk, Dragonfly will explore various sites, analyzing the surface chemistry to investigate the frozen remains of what could have been prebiotic chemistry in action. NASA/JPL-Caltech/University of Nantes/University of Arizona The impact that formed Selk melted the icy bedrock, creating a temporary pool that could have remained liquid for hundreds to thousands of years under an insulating ice layer, like winter ponds on Earth. If a natural antifreeze like ammonia were mixed in, the pool could have remained unfrozen even longer, blending water with organics and the impactor’s silicon, phosphorus, sulfur and iron to form a primordial soup.
      “It’s essentially a long-running chemical experiment,” said Sarah Hörst, an atmospheric chemist at Johns Hopkins University and co-investigator on Dragonfly’s science team. “That’s why Titan is exciting. It’s a natural version of our origin-of-life experiments — except it’s been running much longer and on a planetary scale.”
      For decades, scientists have simulated Earth’s early conditions, mixing water with simple organics to create a “prebiotic soup” and jumpstarting reactions with an electrical shock. The problem is time. Most tests last weeks, maybe months or years.
      The melt pools at Selk crater, however, possibly lasted tens of thousands of years. Still shorter than the hundreds of millions of years it took life to emerge on Earth, but potentially enough time for critical chemistry to occur. 
      “We don’t know if Earth life took so long because conditions had to stabilize or because the chemistry itself needed time,” Hörst said. “But models show that if you toss Titan’s organics into water, tens of thousands of years is plenty of time for chemistry to happen.”
      Dragonfly will test that theory. Landing near Selk, it will fly from site to site, analyzing the surface chemistry to investigate the frozen remains of what could have been prebiotic chemistry in action. 
      Morgan Cable, a research scientist at NASA’s Jet Propulsion Laboratory in Southern California and co-investigator on Dragonfly, is particularly excited about the Dragonfly Mass Spectrometer (DraMS) instrument. Developed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with a key subsystem provided by the CNES (Centre National d’Etudes Spatiales), DraMS will search for indicators of complex chemistry.
      “We’re not looking for exact molecules, but patterns that suggest complexity,” Cable said. On Earth, for example, amino acids — fundamental to proteins — appear in specific patterns. A world without life would mainly manufacture the simplest amino acids and form fewer complex ones. 
      Generally, Titan isn’t regarded as habitable; it’s too cold for the chemistry of life as we know it to occur, and there’s is no liquid water on the surface, where the organics and likely energy sources exist. 
      Still, scientists have assumed that if a place has life’s ingredients and enough time, complex chemistry — and eventually life —  should emerge. If Titan proves otherwise, it may mean we’ve misunderstood something about life’s start and it may be rarer than we thought.
      “We won’t know how easy or difficult it is for these chemical steps to occur if we don’t go, so we need to go and look,” Cable said. “That’s the fun thing about going to a world like Titan. We’re like detectives with our magnifying glasses, looking at everything and wondering what this is.” 
      Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory (APL), which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center and NASA’s Jet Propulsion Laboratory. Dragonfly is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate at NASA Headquarters in Washington.
      For more information on Dragonfly, visit:
      https://science.nasa.gov/mission/dragonfly/
      By Jeremy Rehm
      Johns Hopkins Applied Physics Laboratory, Laurel, Md.
      Media Contacts:
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600 
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov    
      Mike Buckley
      Johns Hopkins Applied Physics Laboratory
      443-567-3145
      michael.buckley@jhuapl.edu
      Facebook logo @NASA @NASA Instagram logo @NASA Linkedin logo @NASA Keep Exploring Discover More Topics From NASA
      Saturn



      Saturn Moons



      Our Solar System



      Asteroids, Comets & Meteors


      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. Full image below. Credits:
      NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth. With Webb’s advanced sensitivity, astronomers have studied the phenomena to better understand Jupiter’s magnetosphere.
      Auroras are created when high-energy particles enter a planet’s atmosphere near its magnetic poles and collide with atoms or molecules of gas. On Earth these are known as the Northern and Southern Lights. Not only are the auroras on Jupiter huge in size, they are also hundreds of times more energetic than those in Earth’s atmosphere. Earth’s auroras are caused by solar storms — when charged particles from the Sun rain down on the upper atmosphere, energize gases, and cause them to glow in shades of red, green and purple.
      Image A: Close-up Observations of Auroras on Jupiter
      NASA’s James Webb Space Telescope has captured new details of the auroras on our solar system’s largest planet. The dancing lights observed on Jupiter are hundreds of times brighter than those seen on Earth.
      These observations of Jupiter’s auroras, taken at a wavelength of 3.36 microns (F335M) were captured with Webb’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. NASA, ESA, CSA, Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Jupiter has an additional source for its auroras: The strong magnetic field of the gas giant grabs charged particles from its surroundings. This includes not only the charged particles within the solar wind but also the particles thrown into space by its orbiting moon Io, known for its numerous and large volcanoes. Io’s volcanoes spew particles that escape the moon’s gravity and orbit Jupiter. A barrage of charged particles unleashed by the Sun also reaches the planet. Jupiter’s large and powerful magnetic field captures all of the charged particles and accelerates them to tremendous speeds. These speedy particles slam into the planet’s atmosphere at high energies, which excites the gas and causes it to glow.
      Image B: Pullout of Aurora Observations on Jupiter (NIRCam Image)
      These observations of Jupiter’s auroras (shown on the left of the above image) at 3.35 microns (F335M) were captured with NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) on Dec. 25, 2023. Scientists found that the emission from trihydrogen cation, known as H3+, is far more variable than previously believed. H3+ is created by the impact of high energy electrons on molecular hydrogen. Because this emission shines brightly in the infrared, Webb’s instruments are well equipped to observe it. The image on the right shows the planet Jupiter to indicate the location of the observed auroras, which was originally published in 2023. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI), Jonathan Nichols (University of Leicester), Mahdi Zamani (ESA/Webb) Now, Webb’s unique capabilities are providing new insights into the auroras on Jupiter. The telescope’s sensitivity allows astronomers to capture fast-varying auroral features. New data was captured with Webb’s NIRCam (Near-Infrared Camera) Dec. 25, 2023, by a team of scientists led by Jonathan Nichols from the University of Leicester in the United Kingdom.
      “What a Christmas present it was – it just blew me away!” shared Nichols. “We wanted to see how quickly the auroras change, expecting them to fade in and out ponderously, perhaps over a quarter of an hour or so. Instead, we observed the whole auroral region fizzing and popping with light, sometimes varying by the second.”
      In particular, the team studied emission from the trihydrogen cation (H3+), which can be created in auroras. They found that this emission is far more variable than previously believed. The observations will help develop scientists’ understanding of how Jupiter’s upper atmosphere is heated and cooled.
      The team also uncovered some unexplained observations in their data.
      “What made these observations even more special is that we also took pictures simultaneously in the ultraviolet with NASA’s Hubble Space Telescope,” added Nichols. “Bizarrely, the brightest light observed by Webb had no real counterpart in Hubble’s pictures. This has left us scratching our heads. In order to cause the combination of brightness seen by both Webb and Hubble, we need to have a combination of high quantities of very low-energy particles hitting the atmosphere, which was previously thought to be impossible. We still don’t understand how this happens.”
      Video: Webb Captures Jupiter’s Aurora
      NASA’s James Webb Space Telescope has captured a spectacular light show on Jupiter — an enormous display of auroras unlike anything seen on Earth. These infrared observations reveal unexpected activity in Jupiter’s atmosphere, challenging what scientists thought they knew about the planet’s magnetic field and particle interactions. Combined with ultraviolet data from Hubble, the results have raised surprising new questions about Jupiter’s extreme environment.
      Producer: Paul Morris. Writer: Thaddeus Cesari. Narrator: Professor Jonathan Nichols. Images: NASA, ESA, CSA, STScI. Music Credit: “Zero Gravity” by Brice Davoli [SACEM] via Koka Media [SACEM], Universal Production Music France [SACEM], and Universal Production Music. The team now plans to study this discrepancy between the Hubble and Webb data and to explore the wider implications for Jupiter’s atmosphere and space environment. They also intend to follow up this research with more Webb observations, which they can compare with data from NASA’s Juno spacecraft to better explore the cause of the enigmatic bright emission.
      These results were published today in the journal Nature Communications.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      To learn more about Webb, visit:
      https://science.nasa.gov/webb
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the journal Nature Communications.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Bethany Downer – Bethany.Downer@esawebb.org
      ESA/Webb, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Read more: NASA’s Webb Captures Neptune’s Auroras for the First Time
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Jupiter



      What Is the Solar Wind?



      Juno


      NASA’s Juno spacecraft has explored Jupiter, its moons, and rings since 2016, gathering breakthrough science and breathtaking imagery.

      Share








      Details
      Last Updated May 12, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Jupiter Planets Science & Research The Solar System View the full article
  • Check out these Videos

×
×
  • Create New...