Members Can Post Anonymously On This Site
Europe delivers for Artemis III
-
Similar Topics
-
By NASA
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson NASA and the Department of Defense (DoD) teamed up June 11 and 12 to simulate emergency procedures they would use to rescue the Artemis II crew in the event of a launch emergency. The simulations, which took place off the coast of Florida and were supported by launch and flight control teams, are preparing NASA to send four astronauts around the Moon and back next year as part of the agency’s first crewed Artemis mission.
The team rehearsed procedures they would use to rescue the crew during an abort of NASA’s Orion spacecraft while the SLS (Space Launch System) rocket is still on the launch pad, as well as during ascent to space. A set of test mannequins and a representative version of Orion called the Crew Module Test Article, were used during the tests.
The launch team at NASA’s Kennedy Space Center in Florida, flight controllers in mission control at the agency’s Johnson Space Center in Houston, as well as the mission management team, all worked together, exercising their integrated procedures for these emergency scenarios.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025.NASA/Isaac Watson “Part of preparing to send humans to the Moon is ensuring our teams are ready for any scenario on launch day,” said Lakiesha Hawkins, NASA’s assistant deputy associate administrator for the Moon to Mars Program, and who also is chair of the mission management team for Artemis II. “We’re getting closer to our bold mission to send four astronauts around the Moon, and our integrated testing helps ensure we’re ready to bring them home in any scenario.”
The launch pad abort scenario was up first. The teams conducted a normal launch countdown before declaring an abort before the rocket was scheduled to launch. During a real pad emergency, Orion’s launch abort system would propel Orion and its crew a safe distance away and orient it for splashdown before the capsule’s parachutes would then deploy ahead of a safe splashdown off the coast of Florida.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for a launch pad abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Wednesday, June 11, 2025. NASA/Isaac Watson For the simulated splashdown, the test Orion with mannequins aboard was placed in the water five miles east of Kennedy. Once the launch team made the simulated pad abort call, two Navy helicopters carrying U.S. Air Force pararescuers departed nearby Patrick Space Force Base. The rescuers jumped into the water with unique DoD and NASA rescue equipment to safely approach the spacecraft, retrieve the mannequin crew, and transport them for medical care in the helicopters, just as they would do in the event of an actual pad abort during the Artemis II mission.
The next day focused on an abort scenario during ascent to space.
The Artemis recovery team set up another simulation at sea 12 miles east of Kennedy, using the Orion crew module test article and mannequins. With launch and flight control teams supporting, as was the Artemis II crew inside a simulator at Johnson, the rescue team sprung into action after receiving the simulated ascent abort call and began rescue procedures using a C-17 aircraft and U.S. Air Force pararescuers. Upon reaching the capsule, the rescuers jumped from the C-17 with DoD and NASA unique rescue gear. In an actual ascent abort, Orion would separate from the rocket in milliseconds to safely get away prior to deploying parachutes and splashing down.
Teams with NASA and the Department of Defense (DoD) rehearse recovery procedures for an ascent abort scenario off the coast of Florida near the agency’s Kennedy Space Center on Thursday, June 12, 2025. NASA/Isaac Watson Rescue procedures are similar to those used in the Underway Recovery Test conducted off the California coast in March. This demonstration ended with opening the hatch and extracting the mannequins from the capsule, so teams stopped without completing the helicopter transportation that would be used during a real rescue.
Exercising procedures for extreme scenarios is part of NASA’s work to execute its mission and keep the crew safe. Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.
View the full article
-
By NASA
3 Min Read I Am Artemis: Ernesto Garcia
Ernesto Garcia, engineering manager at Rayotech Scientific, Inc., holds a test article of one of the windowpanes for the Orion spacecraft. Credits: NASA/Rad Sinyak Listen to this audio excerpt from Ernesto Garcia, Rayotech Scientific engineering manager:
0:00 / 0:00
Your browser does not support the audio element.
My name is Ernesto Garcia, and I am an engineering manager at Rayotech Scientific in San Diego, in charge of fabricating the windowpanes for the Orion spacecraft.
Fabricating Orion’s windowpanes entails a very strict manufacturing process. It involves first starting from a giant sheet of glass that we cut down to near net shape. Once we get down to that near net shape, we perform a grinding operation. We grind the window edges and grind the faces.
The windows are visible on the Orion spacecraft crew module for Artemis I, shown here on May 2, 2019, undergoing direct field acoustic testing at NASA’s Kennedy Space Center in Florida.NASA/Rad Sinyak Once we do all that grinding, we perform a specialized process where we actually strengthen the edges of the window. Since most of the window’s strength comes from the edges, we want to make sure that those are perfect and pristine, and so we minimize any subsurface damage that is around that. Then we send it off to get polished and coated.
After that, we perform pressure testing in our lab, which is really the most important thing that is required for this window to prove that it can survive in space. We apply the required stresses to make sure that the windows can survive on the Orion spacecraft.
The opportunity to be part of this program has been something that I’m really proud of.
When I was a child, I always wanted to work for NASA — and now, I work directly with NASA engineers, work with the windows first-hand, and work to develop processes.
Ernesto Garcia
Engineering Manager, Rayotech Scientific
Coming up with ideas of how to manufacture [the windows] and then coming up with the pressure testing equipment to verify that they are going to survive in space was extremely fulfilling.
Being able to participate in Artemis I and seeing those windows on that [Orion spacecraft] — seeing it go into space — was probably one of the most rewarding things I’ve ever experienced besides having my kids. My children are immensely proud of what I’m doing. Seeing my kids’ reactions when I’m letting them know that I’m working directly with people that are putting things in space, with people that are making changes in the world — it’s something that inspires them.
NASA astronauts and Artemis II crew members Reid Wiseman and Victor Glover look through a window of Orion spacecraft mockup during Post Insertion and Deorbit Preparation training at the Space Vehicle Mockup Facility in Houston, Texas. The crew practiced getting the Orion spacecraft configured once in orbit, how to make it habitable, and suited up in their entry pressure suits to prepare for their return from the Moon.Mark Sowa – NASA – JSC I imagine it will be a very special experience for the Artemis II astronauts to look out of these windows on their mission around the Moon. For them to be able to just look out and see what’s around them…to explore what else is out there from their eyes, not a camera’s point of view. It’s going to be pretty extraordinary that they’ll be able to see from their eyes — through our windows — something that not everybody else gets to see.
About the Author
Erika Peters
Share
Details
Last Updated Jun 10, 2025 Related Terms
Orion Program I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
4 min read Laser Focused: Keith Barr Leads Orion’s Lunar Docking Efforts
Article 8 hours ago 3 min read I Am Artemis: Lili Villarreal
Lili Villarreal fell in love with space exploration from an early age when her and…
Article 6 days ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read I Am Artemis: Lili Villarreal
Listen to this audio excerpt from Liliana Villarreal, Artemis Landing & Recovery Director:
0:00 / 0:00
Your browser does not support the audio element. Lili Villarreal fell in love with space exploration from an early age when she and her family visited the Kennedy Space Center Visitor Complex in Florida. So, it should come as no surprise that when the opportunity came for her to start working on NASA’s Artemis missions to explore the Moon and build the foundation for the first crewed mission to Mars, she jumped at it.
I was like, ‘Wow, we're going back to the Moon. I mean, how cool would it be to be at the beginning stages of that?'
Liliana Villareal
Artemis Landing & Recovery Director
She currently serves as the Artemis Landing and Recovery Director, helping retrieve the astronauts and Orion spacecraft after they splash down in the Pacific Ocean following their mission in space.
Originally from Cartagena, Colombia, Villarreal moved to Miami, Florida, when she was 10 years old with the goal of one day entering the aerospace industry. In 2007, her dream came true, and she became a part of the NASA team.
Prior to becoming the landing and recovery director, Villarreal served as the deputy flow director for the Artemis I mission, responsible for the integration, stacking, and testing of the SLS (Space Launch System) rocket and Orion spacecraft inside the Vehicle Assembly Building at the agency’s Kennedy Space Center.
Cliff Lanham, fourth from left, ground operations manager with Exploration Ground Systems (EGS), passes the baton to Charlie Blackwell-Thompson, Artemis I launch director, inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on March 16, 2022. Joining them from left, are Stacey Bagg, Matt Czech, and Liliana Villareal, with EGS. Next to Blackwell-Thomson are Jeremy Graeber, deputy launch director, and Teresa Annulis.
NASA/Glenn Benson “I kind of came in about a couple of years before we started processing Artemis I,” Villarreal said. “It took a while to get to the good parts of operations where it’s like, ‘Oh my god, we have everything here, and we’re starting to put everything together. And every day is a different day. Every day we have to figure out, ‘OK, what happened? How are we going to solve it?’ That’s the fun part about being an engineer out here.”
Throughout her NASA career, she’s also had the opportunity to work in the operations division for the International Space Station Program.
Every day I work on the Artemis missions, I imagine how the people who worked on Apollo felt because we are where they were back then.
Liliana Villareal
Artemis Landing & Recovery Director
Currently, she and the team are training for Artemis II – the first crewed mission under Artemis to send four astronauts around the Moon and back. Part of the training includes rehearsing the steps and procedures to make sure they’re ready for crewed flights. This includes conducting underway recovery tests where NASA and U.S. Navy teams practice retrieving astronauts from a representative version of Orion at sea and bringing them and the spacecraft back to the ship.
“I think it’s an amazing thing what we’re doing for humanity,” Villarreal said. “It’s going to better humanity, and it’s a steppingstone to eventually us living in other worlds. And I get to be part of that. You get to be part of that. How cool is that?”
About the Author
Antonia Jaramillo
Share
Details
Last Updated Jun 04, 2025 Related Terms
Kennedy Space Center Artemis Exploration Ground Systems I Am Artemis Orion Multi-Purpose Crew Vehicle Explore More
4 min read Future Engineers Shine at NASA’s 2025 Lunabotics Robotics Competition
Article 19 hours ago 4 min read Integrated Testing on Horizon for Artemis II Launch Preparations
Article 6 days ago 4 min read Top Prize Awarded in Lunar Autonomy Challenge to Virtually Map Moon’s Surface
Article 3 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Video: 00:02:46 For half a century, the European Space Agency (ESA) has been serving Europe as its space agency and inspiring its citizens. On 30 May 1975, the ESA Convention was signed by 10 founding Member States and has since now expanded to 23 Member States, three Associate Members, four Cooperating States and a Cooperation Agreement with Canada. This anniversary year provides the opportunity to reflect not only on ESA’s past achievements, but even more so on its future perspectives.
View the full article
-
By NASA
NASA Teams responsible for preparing and launching Artemis II at NASA’s Kennedy Space Center in Florida are set to begin a series of integrated tests to get ready for the mission. With the upper stage of the agency’s SLS (Space Launch System) integrated with other elements of the rocket, engineers are set to start the tests to confirm rocket and ground systems are working and communicating as planned.
While similar to the integrated testing campaign conducted for NASA’s uncrewed Artemis I test flight, engineers have added tests ahead of Artemis II to prepare for NASA’s first crewed flight under the Artemis campaign – an approximately 10-day journey by four astronauts around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Interface Verification Testing
Verifies the functionality and interoperability of interfaces across elements and systems. Teams will conduct this test from the firing room in the Launch Control Center and perform health and status checks of various systems and interfaces between the SLS core stage, the solid rocket boosters, and the ground systems. It will ensure different systems, including core stage engines and booster thrust control, work as planned. Teams also will perform the same series of tests with the interim cryogenic propulsion stage and Orion before conducting a final interface test with all segments.
Program Specific Engineering Test
Teams will conduct separate engineering tests for the core stage, rocket boosters, and upper stage following the interface verification tests for each part of the rocket.
End-to-End Communications Testing
Integrated test of SLS core and upper stages, and Orion command and telemetry radio frequencies with mission control at NASA’s Johnson Space Center in Houston to demonstrate flight controllers’ ability to communicate with the ground systems and infrastructure. This test uses a radio frequency antenna in the Vehicle Assembly Building (VAB), another near the launch pad that will cover the first few minutes of launch, as well as a radio frequency that use the Tracking Data Relay Satellite and the Deep Space Network. Teams will do two versions of this test – one with the ground equipment communicating with a radio and telemetry station for checkouts, and one with all the hardware and equipment communicating with communications infrastructure like it will on launch day.
Countdown Demonstration Test
Teams will conduct a launch day demonstration with the Artemis II astronauts to test launch countdown procedures and make any final necessary adjustments ahead of launch. This test will be divided into two parts. The first will be conducted while SLS and Orion are in the VAB and include the Artemis II crew departing their crew quarters after suiting up at the Neil A. Armstrong Operations and Checkout Building and driving to the VAB where they will enter Orion like they will on launch day and practice getting strapped in. Part two will be completed once the rocket is at the launch pad and will allow the astronauts and Artemis launch team to practice how to use the emergency egress system, which would be used in the event of an unlikely emergency at the launch pad during launch countdown.
Flight Termination System End-to-End Test
Test to ensure the rocket’s flight termination system can be activated in the event of an emergency. For public safety, all rockets are required to have a flight termination system. This test will be divided into two parts inside the VAB. The first will take place ahead of Orion getting stacked atop SLS and the second will occur before the rocket and spacecraft roll out to the launch pad.
Wet Dress Rehearsal
Teams will practice loading cryogenic liquid propellant inside SLS once it’s at the launch pad and run through the launch countdown sequences just prior to engine ignition. The rehearsal will run the Artemis II launch team through operations to load liquid hydrogen and liquid oxygen into the rocket’s tanks, conduct a full launch countdown, demonstrate the ability to recycle the countdown clock, and also drain the tanks to give them an opportunity to practice the timelines and procedures they will use for launch.
Teams will load more than 700,000 gallons of cryogenic, or super cold, propellants into the rocket at the launch pad on the mobile launcher according to the detailed timeline they will use on the actual launch day. They will practice every phase of the countdown, including weather briefings, pre-planned holds in the countdown, conditioning and replenishing the propellants as needed, and validation checks. The Artemis II crew will not participate in the rehearsal.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.