Members Can Post Anonymously On This Site
Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Curiosity Blog, Sols 4568-4569: A Close Look at the Altadena Drill Hole and Tailings
NASA’s Mars rover Curiosity acquired this image of the “Altadena” drill hole using its Mast Camera (Mastcam) on June 8, 2025 — Sol 4564, or Martian day 4,564 of the Mars Science Laboratory mission — at 13:57:45 UTC. NASA/JPL-Caltech/MSSS Written by Sharon Wilson Purdy, Planetary Geologist at the Smithsonian National Air and Space Museum
Earth planning date: Wednesday, June 11, 2025
As we near the end of our Altadena drill campaign, Curiosity continued her exploration of the Martian bedrock within the boxwork structures on Mount Sharp. After successfully delivering a powdered rock sample to both the CheMin (Chemistry and Mineralogy) and SAM (Sample Analysis at Mars) instruments, the focus for sols 4568 and 4569 was to take a closer look at the drill hole itself — specifically, the interior walls of the drill hole and the associated tailings (the rock material pushed out by the drill).
In the image above, you can see that the tone (or color) of the rock exposed within the wall of the drill hole appears to change slightly with depth, and the drill tailings are a mixture of fine powder and more solid clumps. If you compare the Altadena drill site with the 42 drill sites that came before, one can really appreciate the impressive range of colors, textures, and grain sizes in the rocks that Curiosity has analyzed over the past 12 years. Every drill hole marks a window into the past and can help us understand how the ancient environment and climate on Mars evolved over time.
In this two-sol plan, the ChemCam, Mastcam, APXS, and MAHLI instruments coordinated their observations to image and characterize the chemistry of the wall of the drill hole and tailings before we drive away from this site over the coming weekend. Outside of our immediate workspace, Mastcam created two stereo mosaics that will image the boxwork structures nearby as well as the layers within Texoli butte. ChemCam assembled three long-distance RMI images that will help assess the layers at the base of the “Mishe Mokwa” hill, complete the imaging of the nearby boxwork structures, and image the very distant crater rim (about 90 kilometers, or 56 miles away) and sky to investigate the scattering properties of the atmosphere. The environmental theme group included observations that will measure the properties of the atmosphere and also included a dust-devil survey.
Share
Details
Last Updated Jun 13, 2025 Related Terms
Blogs Explore More
2 min read Curiosity Blog, Sols 4566-4567: Drilling Success
Article
2 days ago
4 min read Curiosity Blog, Sols 4563-4565: Doing What We Do Best
Article
5 days ago
4 min read Sols 4561-4562: Prepping to Drill at Altadena
Article
1 week ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Researchers look at a bend that occurred in the 94-foot triangular, rollable and collapsible boom during an off-axis compression test.NASA/David C. Bowman Researchers at NASA’s Langley Research Center in Hampton, Virginia, have developed a technique to test long, flexible, composite booms for use in space in such a way that gravity helps, rather than hinders, the process. During a recent test campaign inside a 100-foot tower at a NASA Langley lab, researchers suspended a 94-foot triangular, rollable, and collapsible boom manufactured by Florida-based aerospace company, Redwire, and applied different forces to the boom to see how it would respond.
Having a facility tall enough to accommodate vertical testing is advantageous because horizontal tests require extra equipment to keep gravity from bending the long booms, but this extra equipment in turn affects how the boom responds. These mechanical tests are important because NASA and commercial space partners could use long composite booms for several functions including deployable solar sails and deployable structures, such as towers for solar panels, that could support humans living and working on the Moon.
Redwire will be able to compare the results of the physical testing at NASA Langley to their own numerical models and get a better understanding of their hardware. NASA’s Game Changing Development program in the agency’s Space Technology Mission Directorate funded the tests.
Researchers conducted the tests inside a 100-foot tower at NASA Langley.NASA/Mark Knopp Share
Details
Last Updated May 29, 2025 Related Terms
Langley Research Center Game Changing Development Program Space Technology Mission Directorate Explore More
3 min read Autonomous Tritium Micropowered Sensors
Article 2 days ago 3 min read Addressing Key Challenges To Mapping Sub-cm Orbital Debris in LEO via Plasma Soliton Detection
Article 2 days ago 3 min read Breathing Beyond Earth: A Reliable Oxygen Production Architecture for Human Space Exploration
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
Sols 4549-4552: Keeping Busy Over the Long Weekend
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 23, 2025 — Sol 4548, or Martian day 4,548 of the Mars Science Laboratory mission — at 07:17:19 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
Earth planning date: Friday, May 23, 2025
In Wednesday’s mission update, Alex mentioned that this past Monday’s plan included a “marathon” drive of 45 meters (148 feet). Today, we found ourselves almost 70 meters (230 feet) from where we were on Wednesday. This was our longest drive since the truly enormous 97-meter (318-foot) drive back on sol 3744.
Today’s plan looks a little different from our usual weekend plans. Because of the U.S. Memorial Day holiday on Monday, the team will next assemble on Tuesday, so an extra sol had to be appended to the weekend plan. This extra sol is mostly being used for our next drive (about 42 meters or 138 feet), which means that all of the science that we have planned today can be done “targeted,” i.e., we know exactly where the rover is. As a result, we can use the instruments on our arm to poke at specific targets close to the rover, rather than filling our science time exclusively with remote sensing activities of farther-away features.
The rover’s power needs are continuing to dominate planning. Although we passed aphelion (the farthest distance Mars is from the Sun) a bit over a month ago and so are now getting closer to the Sun, we’re just about a week away from winter solstice in the southern hemisphere. This is the time of year when Gale Crater receives the least amount of light from the Sun, leading to particularly cold temperatures even during the day, and thus more power being needed to keep the rover and its instruments warm. On the bright side, being at the coldest time of the year means that we have only warmer sols to look forward to!
Given the need to keep strictly to our allotted power budget, everyone did a phenomenal job finding optimizations to ensure that we could fit as much science into this plan as possible. All together, we have over four hours of our usual targeted and remote sensing activities, as well as over 12 hours of overnight APXS integrations.
Mastcam is spending much of its time today looking off in the distance, particularly focusing on the potential boxwork structures that we’re driving towards. These structures get two dedicated mosaics, totaling 42 images between the two of them. Mastcam will also observe “Mishe Mokwa” (a small butte about 15 meters, or 49 feet, to our south) and some bedrock troughs in our workspace, and will take two tau observations to characterize the amount of dust in the atmosphere.
ChemCam has just one solo imaging-only observation in this plan: an RMI mosaic of Texoli butte off to our east. ChemCam will be collaborating with APXS to take some passive spectral observations (i.e., no LIBS) to measure the composition of the atmosphere. Mastcam and ChemCam will also be working together on observations of LIBS activities. This plan includes an extravagant three LIBS, on “Orocopia Mountains,” “Dripping Springs,” and “Mountain Center.” Both Mastcam and ChemCam also have a set of “dark” observations intended to characterize the performance of the instruments with no light on their sensors, something that’s very important for properly calibrating their measurements.
Our single set of arm activities includes APXS, DRT, and MAHLI activities on “Camino Del Mar” and “Mount Baden-Powell,” both of which are bedrock targets in our workspace.
Of course, I can’t forget to mention the collection of Navcam observations that we have in this plan to monitor the environment. These include a 360-degree survey looking for dust devils, two line-of-sight activities to measure the amount of dust in the air within Gale, and three cloud movies. As always, we’ve also got a typical collection of REMS, RAD, and DAN activities throughout.
Share
Details
Last Updated May 27, 2025 Related Terms
Blogs Explore More
2 min read Sols 4547-4548: Taking in the View After a Long Drive
Article
5 days ago
2 min read Sol 4546: Martian Jenga
Article
5 days ago
5 min read Sols 4543-4545: Leaving the Ridge for the Ridges
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Sols 4547-4548: Taking in the View After a Long Drive
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on May 21, 2025 — Sol 4546, or Martian day 4,546 of the Mars Science Laboratory mission — at 05:05:33 UTC. NASA/JPL-Caltech Written by Alex Innanen, Atmospheric Scientist at York University
Earth planning date: Wednesday, May 21, 2025
Monday’s single-sol plan included a marathon 45-meter drive (about 148 feet), which put us in position for two full sols of imaging. This means both sols have what we call “targeted” science blocks, in which we have images of the workspace down from the last plan and can carefully choose what we want to take a closer look at. This always means a lot of good discussion amongst the geology and mineralogy theme group (GEO) about what deserves this closer look. As an outsider on the environmental theme group (ENV), I don’t always grasp the complexities of these discussions, but it’s always interesting to see what GEO is up to and to learn new things about the geology of Mount Sharp.
GEO ended up picking “Big Bear Lake” as our contact science target, which is getting its typical treatment from APXS and MAHLI, as well as a LIBS observation from ChemCam. Aside from that there was plenty of room for remote sensing. ChemCam is also taking a LIBS observation of “Volcan Mountains” and a long-distance mosaic of the Texoli butte. Mastcam is also taking mosaics of a nearby trough, as well as two depressions known as “Sulphur Spring,” a more distant boxwork structure, and the very distant Mishe Mokwa butte.
All of ENV’s activities are remote sensing, and we managed to squeeze in a few of those too. We have a couple dust monitoring observations, looking for dust devils and checking the amount of dust in the atmosphere. And since we’re still in the cloudy season we always try to make room for cloud observations. Today that meant a suraphorizon movie looking for clouds just above the horizon to the south, and a phase function sky survey, which captures clouds all around the rover, to try to understand how these clouds scatter sunlight.
Share
Details
Last Updated May 22, 2025 Related Terms
Blogs Explore More
2 min read Sol 4546: Martian Jenga
Article
3 hours ago
5 min read Sols 4543-4545: Leaving the Ridge for the Ridges
Article
2 days ago
3 min read Sols 4541–4542: Boxwork Structure, or Just “Box-Like” Structure?
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Explore This Section Science Science Activation Take a Tour of the Cosmos with… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 4 min read
Take a Tour of the Cosmos with New Interactives from NASA’s Universe of Learning
Ready for a tour of the cosmos? NASA’s Universe of Learning has released a new, dynamic way for lifelong learners to explore NASA’s breathtaking images of the universe—ViewSpace interactive Image Tours. ViewSpace has an established track record of providing museums, science centers, libraries, and other informal learning environments with free, web-based videos and digital interactives—like its interactive Image Sliders. These new Image Tours are another unique experience from NASA’s Universe of Learning, created through a collaboration between scientists that operate NASA telescopes and experts well-versed in the most modern methods of learning. Hands-on, self-directed learning resources like these have long been valued by informal learning sites as effective means for engaging and intriguing users with the latest discoveries from NASA’s space telescope missions—while encouraging lifelong learners to continue their passionate exploration of the stars, galaxies, and distant worlds.
With these new ViewSpace Image Tours, visitors can take breathtaking journeys through space images that contain many exciting stories. The “Center of the Milky Way Galaxy” Tour, for example, uses breathtaking images from NASA’s Hubble, Spitzer, and Chandra X-ray telescopes and includes eleven Tour Stops, where users can interact with areas like “the Brick”—a dense, dark cloud of hydrogen molecules imaged by Spitzer. Another Tour Stop zooms toward the supermassive black hole, Sagittarius A*, offering a dramatic visual journey to the galaxy’s core.
In other tours, like the “Herbig-Haro 46/47” Tour, learners can navigate through points of interest in an observation from a single telescope mission. In this case, NASA’s James Webb Space Telescope provides the backdrop where lifelong learners can explore superheated jets of gas and dust being ejected at tremendous speeds from a pair of young, forming stars. The power of Webb turns up unexpected details in the background, like a noteworthy distant galaxy famous for its uncanny resemblance to a question mark. Each Interactive Image Tour allows people to examine unique features through videos, images, or graphical overlays to identify how those features have formed in ways that static images alone can’t convey.
These tours, which include detailed visual descriptions for each Tour Stop, illuminate the science behind the beauty, allowing learners of all ages to develop a greater understanding of and excitement for space science, deepening their engagement with astronomy, regardless of their prior experience. Check out the About the Interactives page on the ViewSpace website for a detailed overview of how to use the Image Tours.
ViewSpace currently offers three Image Tours, and the collection will continue growing:
Center of the Milky Way Galaxy:
Peer through cosmic dust and uncover areas of intense activity near the Milky Way’s core, featuring imagery from the Hubble Space Telescope, Spitzer Space Telescope, and the Chandra X-ray Observatory.
Herbig-Haro 46/47:
Witness how a tightly bound pair of young stars shapes their nebula through ejections of gas and dust in an image from the James Webb Space Telescope.
The Whirlpool Galaxy:
Explore the iconic swirling arms and glowing core of a stunning spiral galaxy, with insights into star formation, galaxy structure, and more in a Hubble Space Telescope image.
“The Image Tours are beautiful, dramatic, informational, and easy to use,” explained Sari Custer, Chief of Science and Curiosity at Arizona Science Center. “I’m excited to implement them in my museum not only because of the incredible images and user-friendly features, but also for the opportunity to excite and ignite the public’s curiosity about space.”
NASA’s Universe of Learning is supported by NASA under cooperative agreement award number NNX16AC65A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn/about-science-activation/
Select views from various Image Tours. Clockwise from top left: The Whirlpool Galaxy, Center of the Milky Way Galaxy, Herbig-Haro 46/47, detail view in the Center of the Milky Way Galaxy. Share
Details
Last Updated May 13, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Astrophysics For Educators Explore More
5 min read NASA’s Webb Reveals New Details, Mysteries in Jupiter’s Aurora
Article
1 day ago
2 min read Hubble Comes Face-to-Face with Spiral’s Arms
Article
4 days ago
7 min read NASA’s Hubble Pinpoints Roaming Massive Black Hole
Article
5 days ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.