Jump to content

Entrepreneurs Challenge Prize Winner Uses Artificial Intelligence to Identify Methane Emissions


Recommended Posts

  • Publishers
Posted

The NASA Science Mission Directorate (SMD) instituted the Entrepreneurs Challenge to identify innovative ideas and technologies from small business start-ups with the potential to advance the agency’s science goals. Geolabe—a prize winner in the latest Entrepreneurs Challenge—has developed a way to use artificial intelligence to identify global methane emissions. Methane is a greenhouse gas that significantly contributes to global warming, and this promising new technology could provide data to help decision makers develop strategies to mitigate climate change.

SMD sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023. Challenge winners were awarded prize money—in 2023 the total Entrepreneurs Challenge prize value was $1M. To help leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Numerous challenge winners have subsequently received funding from both NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies.

Each Entrepreneurs Challenge solicited submissions in specific focus areas such as mass spectrometry technology, quantum sensors, metamaterials-based sensor technologies, and more. The focus areas of the latest 2023 challenge included lunar surface payloads and climate science.

A recent Entrepreneurs Challenge success story involves 2023 challenge winner Geolabe—a startup founded by Dr. Claudia Hulbert and Dr. Bertrand Rouet-Leduc in 2020 in Los Alamos, New Mexico. The Geolabe team developed a method that uses artificial intelligence (AI) to automatically detect methane emissions on a global scale.

emissions-tech-highlights.png?w=1019
This image taken from a NASA visualization shows the complex patterns of methane emissions around the globe in 2018, based on data from satellites, inventories of human activities, and NASA global computer models.
Credit: NASA’s Scientific Visualization Studio

As global temperatures rise to record highs, the pressure to curb greenhouse gas emissions has intensified. Limiting methane emissions is particularly important since methane is the second largest contributor to global warming, and is estimated to account for approximately a third of global warming to date. Moreover, because methane stays in the atmosphere for a shorter amount of time compared to CO2, curbing methane emissions is widely considered to be one of the fastest ways to slow down the rate of global warming.

However, monitoring methane emissions and determining their quantities has been challenging due to the limitations of existing detection methods. Methane plumes are invisible and odorless, so they are typically detected with specialized equipment such as infrared cameras. The difficulty in finding these leaks from space is akin to finding a needle in a haystack. Leaks are distributed around the globe, and most of the methane plumes are relatively small, making them easy to miss in satellite data.

Multispectral satellite imagery has emerged as a viable methane detection tool in recent years, enabling routine measurements of methane plumes at a global scale every few days. However, with respect to methane, these measurements suffer from very poor signal to noise ratio, which has thus far allowed detection of only very large emissions (2-3 tons/hour) using manual methods.

85258398-xl-normal-none.png?w=2048
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.
Credit: NASA, ESA, CSA, and STScI

The Geolabe team has developed a deep learning architecture that automatically identifies methane signatures in existing open-source spectral satellite data and deconvolves the signal from the noise. This AI method enables automatic detection of methane leaks at 200kg/hour and above, which account for over 85% of the methane emissions in well-studied, large oil and gas basins. Information gained using this new technique could help inform efforts to mitigate methane emissions on Earth and automatically validate their effects. This Geolabe project was featured in Nature Communications on May 14, 2024.

SPONSORING ORGANIZATION

NASA Science Mission Directorate

Share

Details

Last Updated
Aug 20, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read
      NASA Selects Winners of the 2024-2025 Power to Explore Challenge
      Ten-year-old, Terry Xu of Arcadia, California; 14-year-old, Maggie Hou of Snohomish, Washington; and 17-year-old, Kairat Otorov of Trumbull, Connecticut, winners of the 2024-2025 Power to Explore Student Writing Challenge. NASA/David Lam, Binbin Zheng, The Herald/Olivia Vanni, Meerim Otorova NASA has chosen three winners out of nine finalists in the fourth annual Power to Explore Challenge, a national writing competition designed to teach K-12 students about the enabling power of radioisotopes for space exploration.
      “Congratulations to the amazing champions and all of the participants!
      Carl Sandifer II
      Program Manager, NASA’s Radioisotope Power Systems Program
      The essay competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to “nuclear batteries,” which the agency has used discover “moonquakes” on Earth’s Moon and study some of the most extreme of the more than 891 moons in the solar system. In 275 words or less, students dreamed up a unique exploration mission of one of these moons and described their own power to achieve their mission goals.
      “I’m so impressed by the creativity and knowledge of our Power to Explore winners,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland.
      Entries were split into three groups based on grade level, and a winner was chosen from each. The three winners, each accompanied by a guardian, are invited to NASA’s Glenn Research Center in Cleveland for a VIP tour of its world-class research facilities this summer.
      The winners are:
      Terry Xu, Arcadia, California, kindergarten through fourth grade Maggie Hou, Snohomish, Washington, fifth through eighth grade Kairat Otorov, Trumbull, Connecticut, ninth through 12th grade “Congratulations to the amazing champions and all of the participants! Your “super powers” inspire me and make me even more optimistic about the future of America’s leadership in space,” Sandifer said.
      The Power to Explore Challenge offered students the opportunity to learn about space power, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received nearly 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas.
      Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21. There, NASA announced the 45 national semifinalists, and students learned about what powers the NASA workforce.
      Additionally, the national semifinalists received a NASA RPS prize pack.
      NASA announced three finalists in each age group (nine total) on April 23. Finalists were invited to discuss their mission concepts with a NASA scientist or engineer during an exclusive virtual event.
      The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      For more information on radioisotope power systems visit: https://nasa.gov/rps
      Karen Fox / Erin Morton
      Headquarters, Washington
      301-286-6284 / 202-805-9393
      karen.c.fox@nasa.gov / erin.morton@nasa.gov
      Kristin Jansen
      Glenn Research Center, Cleveland
      216-296-2203
      kristin.m.jansen@nasa.gov
      View the full article
    • By European Space Agency
      Video: 00:03:23 Astrophysicist and Nobel Prize Laureate Didier Queloz answers the who, what, where, when and why of exoplanets in this 3-part series. 
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Multinational corporations are using the M2M Intelligence platform in data centers and other settings. The system offers automated, secure communications on a ground-based global 5G network. Getty Images Artificial intelligence (AI) is advancing rapidly, as intelligent software proves capable of various tasks. The technology usually requires a “human in the loop” to train it and ensure accuracy. But long before the arrival of today’s generative artificial intelligence, a different kind of AI was born with the help of NASA’s Ames Research Center in California’s Silicon Valley — one that only exists between machines, running without any human intervention.

      In 2006, Geoffrey Barnard founded Machine-to-Machine Intelligence Corp. (M2Mi) at Ames’ NASA Research Park, envisioning an automated, satellite-based communication network. NASA Ames established a Space Act Agreement with the company to develop artificial intelligence that would automate communications, privacy, security, and resiliency between satellites and ground-based computers.

      Central to the technology was automating a problem-solving approach known as root cause analysis, which NASA has honed over decades. This methodology seeks to identify not only the immediate cause of a problem but also all the factors that contributed to the cause. This would allow a network to identify its own issues and fix itself. 

      NASA Ames’ director of nanotechnology at the time wanted to develop a communications network based on small, low-powered satellites, so Ames supported M2Mi in developing the necessary technology. 
      Barnard, now CEO and chief technology officer of Tiburon, California-based branch of M2Mi, said NASA’s support laid the foundation for his company, which employs the same technology in a ground-based network. 
      The company’s M2M Intelligence software performs secure, resilient, automated communications on a system that runs across hundreds of networks, connecting thousands of devices, many of which were not built to communicate with each other. The M2Mi company worked with Vodafone of Berkshire, England, to build a worldwide network across more than 500 smaller networks in over 190 countries. The companies M2M Wireless and TriGlobal have begun using M2M Intelligence for transportation logistics. 
      With NASA’s help, emerging industries are getting the boost they need to rapidly develop technologies to enhance our lives. 
      Read More Share
      Details
      Last Updated Apr 29, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Engineering Sparks Innovative New Battery 
      Nickel-hydrogen technology is safe, durable, and long-lasting – now it’s affordable too.
      Article 5 days ago 2 min read NASA Tech Developed for Home Health Monitoring  
      Article 3 weeks ago 2 min read NASA Cloud Software Helps Companies Find their Place in Space 
      Article 1 month ago Keep Exploring Discover Related Topics
      Missions
      Artificial Intelligence for Science
      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.
      Ames Research Center
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s annual Student Launch challenge will bring middle school, high school, and college students from around the country together to launch high-powered rockets and payloads. On Saturday, May 3, from 8:30 a.m.-2:30 p.m. CDT (or until the last rocket launches), student teams will convene for the agency’s 25th annual challenge at Bragg Farms in Toney, Alabama, near NASA’s Marshall Space Flight Center in Huntsville. 
      Hundreds of students from across the U.S. and Puerto Rico launched amateur rockets near NASA’s Marshall Space Flight Center in Huntsville, Alabama, during the Agency’s 2024 Student Launch competition. NASA Live streaming will begin at 8:20 a.m. CDT on NASA Marshall YouTube.
      Media interested in covering Student Launch events should contact Taylor Goodwin at 938-210-2891.
      Winners will be announced June 9 during a virtual awards ceremony once all teams’ flight data has been verified.
      Seventy-one teams participated this year; 47 teams are expected to launch in-person. Teams not traveling to Alabama are allowed to conduct final test flights at a qualified launch field near them.
      Schedule of Events:
      Rocket Fair: Friday, May 2, 2025, 3-6 p.m. at the Von Braun Center East Hall.
      A free event for the public to view rockets and meet the student teams.
      Launch Day: Saturday, May 3, 2025, gates open at 7 a.m. and the event runs from 8:30 a.m.-2:30 p.m. (or until last rocket launch) at Bragg Farms, in Toney, Alabama. This is a free public event with live rocket launches. Please be weather aware. Lawn chairs are recommended. Pets are not permitted.
      Back-up Launch Day: Sunday, May 4, 2025, is reserved as a back-up launch day in case of inclement weather. If needed, the event will run from 8:30 a.m. to 2:30 p.m. (or until last rocket launches) at Bragg Farms.
      About the Competition
      Student Launch provides relevant, cost-effective research and development of rocket propulsion systems and reflects the goals of NASA’s Artemis Program, which will establish the first long-term presence on the Moon and pave the way for eventual Mars missions.
      Each year, the payload component changes to reflect current NASA missions. As Student Launch celebrates its 25th anniversary, the payload challenge will include “reports” from STEMnauts, non-living objects representing astronauts. The STEMnaut “crew” must relay real-time data to the student team’s mission control, just as the Artemis astronaut crew will do as they explore the lunar surface.  
      Eligible teams compete for prizes and awards and are scored in nearly a dozen categories including safety, vehicle design, social media presence, and science, technology, engineering, and math (STEM) engagement.
      Marshall’s Office of STEM Engagement hosts Student Launch to encourage students to pursue careers in STEM through real-world experiences. Student Launch is a part of the agency’s Artemis Student Challenges– a variety of activities exposing students to the knowledge and technology required to achieve the goals of the Artemis missions.
      In addition to the NASA Office of STEM Engagement’s Next Gen STEM project, NASA Space Operations Mission Directorate, Northrup Grumman, National Space Club Huntsville, American Institute of Aeronautics and Astronautics, National Association of Rocketry, Relativity Space and Bastion Technologies provide funding and leadership for the competition.
      For more information about Student Launch, please visit:
      https://www.nasa.gov/learning-resources/nasa-student-launch/
      Taylor Goodwin 
      NASA’s Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      taylor.goodwin@nasa.gov
      Facebook logo @NASAStudentLaunch @StudentLaunch Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 29, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center For Colleges & Universities Learning Resources Explore More
      4 min read NASA Marshall Fires Up Hybrid Rocket Motor to Prep for Moon Landings
      Article 5 days ago 6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 days ago 6 min read Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
      At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section RPS Home About About RPS About the Program About Plutonium-238 Safety and Reliability For Mission Planners Contact Power & Heat Overview Power Systems Thermal Systems Dynamic Radioisotope Power Missions Overview Timeline News Resources STEM FAQ 3 min read
      Nine Finalists Advance in NASA’s Power to Explore Challenge
      The logo for the 2024-2025 Radioisotope Power Systems Power to Explore student essay contest. Credits: NASA/David Lam NASA has named nine finalists out of the 45 semifinalist student essays in the Power to Explore Challenge, a national writing competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions, and to dream up how their personal “superpowers” would energize their success on their own radioisotope-powered science mission.
      I am always so impressed by quality of the essays and the creativity of the ideas that the students submit to NASA’s Power to Explore Challenge.
      Carl Sandifer II
      Program Manager, NASA Radioisotope Power Systems Program
      The competition asked students to learn about NASA’s radioisotope power systems (RPS), likened to a “nuclear battery” that the agency uses to explore some of the most extreme destinations in our solar system and beyond. Long before the early days of Apollo, our Moon has inspired explorers of all ages to push beyond known limits to realize impossible dreams. These systems have enabled NASA to discover “moonquakes” on Earth’s Moon and study some of the most extreme moons of the solar system, which have active volcanoes, methane lakes, and ice glaciers. As of March 25, NASA has discovered over 891 moons, each with secrets ready to be unlocked.
      Students were challenged to pick any moon in our solar system’s exploration could be enabled by this space power systems. In 275 words or less, they dreamed up a unique exploration mission of this moon and described their own power to achieve their mission goals.
      The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest received 2,051 submitted entries from all 50 states, U.S. territories, and the Department of Defense Education Activity overseas.
      “I am always so impressed by quality of the essays and the creativity of the ideas that the students submit to NASA’s Power to Explore Challenge.” said Carl Sandifer, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “I’m looking forward to welcoming the winners to NASA’s Glenn this summer.”
      Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate and an invitation to the Power Up virtual event held on March 21 that announced the semifinalists. Students learned about what powers the NASA workforce to dream big and work together to explore.
      Three national finalists in each grade category (nine finalists total) have been selected. In addition to receiving a NASA RPS prize pack, these participants will be invited to an exclusive virtual meeting with a NASA engineer or scientist to talk about their missions and have their space exploration questions answered. Winners will be announced on May 7.
      Grades K-4
      Mini M, Ann Arbor, Michigan Zachary Tolchin, Guilford, Connecticut Terry Xu, Arcadia, California Grades 5-8
      Lilah Coyan, Spokane, Washington Maggie Hou, Snohomish, Washington Sarabhesh Saravanakumar, Bothell, Washington Grades 9-12
      Faiz Karim, Jericho, New York Kairat Otorov, Trumbull, Connecticut Saanvi Shah, Bothell, Washington About the Challenge
      The challenge is funded by the Radioisotope Power Systems Program Office in NASA’s Science Mission Directorate and administered by Future Engineers under a Small Business Innovation Research phase III contract. This task is managed by the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.
      Kristin Jansen
      NASA’s Glenn Research Center
      View the full article
  • Check out these Videos

×
×
  • Create New...