Jump to content

NASA-Designed Greenhouse Gas-Detection Instrument Launches


Recommended Posts

  • Publishers
Posted
1-pia26411-tanager-rendering.png?w=1920
This artist’s concept depicts one of the Carbon Mapper Coalition’s Tanager satellites, the first of which launched on Aug. 16. Tanager-1 will use imaging spectrometer technology developed at JPL to measure greenhouse gas point-source emissions.
Planet Labs PBC

Developed by the agency’s Jet Propulsion Laboratory, the imaging spectrometer will provide actionable data to help reduce emissions that contribute to global warming.

Tanager-1, the Carbon Mapper Coalition’s first satellite, which carries a state-of-the-art, NASA-designed greenhouse-gas-tracking instrument, is in Earth orbit after lifting off aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California at 11:56 a.m. PDT Friday, Aug. 16. Ground controllers successfully established communications with Tanager-1 at 2:45 p.m. PDT the same day.

The satellite will use imaging spectrometer technology developed at NASA’s Jet Propulsion Laboratory in Southern California to measure methane and carbon dioxide point-source emissions, down to the level of individual facilities and equipment, on a global scale. Tanager-1 was developed as part of a philanthropically funded public-private coalition led by the nonprofit Carbon Mapper. Planet Labs PBC, which built Tanager-1, and JPL are both members of the Carbon Mapper Coalition and plan to launch a second Tanager satellite equipped with a JPL-built imaging spectrometer at a later date.

“The imaging spectrometer technology aboard Tanager-1 is the product of four decades of development at NASA JPL and truly in a class of its own,” said JPL Director Laurie Leshin. “The data that this public-private partnership provides on sources of greenhouse gas emissions will be precise and global, making it beneficial to everyone.”

Once in operation, the spacecraft will scan about 50,000 square miles (130,000 square kilometers) of Earth’s surface per day. Carbon Mapper scientists will analyze data from Tanager-1 to identify gas plumes with the unique spectral signatures of methane and carbon dioxide — and pinpoint their sources. Plume data will be publicly available online at the Carbon Mapper data portal.

Methane and carbon dioxide are the greenhouse gases that contribute most to climate change. About half of methane emissions worldwide result from human activities — primarily from the fossil fuel, agriculture, and waste management industries. Meanwhile, there is now 50% more carbon dioxide in the atmosphere than there was in 1750, an increase largely due to the extraction and burning of coal, oil, and gas.

“The Carbon Mapper Coalition is a prime example of how organizations from different sectors are uniting around a common goal of addressing climate change,” said Riley Duren, Carbon Mapper CEO. “By detecting, pinpointing, and quantifying super-emitters and making this data accessible to decision-makers, we can drive significant action around the world to cut emissions now.”

The imaging spectrometer aboard the satellite measures hundreds of wavelengths of light that are reflected by Earth’s surface. Different compounds in the planet’s atmosphere — including methane and carbon dioxide — absorb different wavelengths of light, leaving spectral “fingerprints” that the imaging spectrometer can identify. These infrared fingerprints can enable researchers to pinpoint and quantify strong greenhouse gas emissions, potentially accelerating mitigation efforts.

Tanager-1 is part of a broader effort to make methane and carbon dioxide data accessible and actionable. That effort includes using measurements provided by NASA’s EMIT (Earth Surface Mineral Dust Source Investigation), an imaging spectrometer developed by JPL and installed on the International Space Station.

More About Carbon Mapper

Carbon Mapper is a nonprofit organization focused on facilitating timely action to mitigate greenhouse gas emissions. Its mission is to fill gaps in the emerging global ecosystem of methane and carbon dioxide monitoring systems by delivering data at facility scale that is precise, timely, and accessible to empower science-based decision making and action. The organization is leading the development of the Carbon Mapper constellation of satellites supported by a public-private partnership composed of Planet Labs PBC, JPL, the California Air Resources Board, the University of Arizona, Arizona State University, and RMI, with funding from High Tide Foundation, Bloomberg Philanthropies, Grantham Foundation for the Protection of the Environment, and other philanthropic donors.

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

Kelly Vaughn
Carbon Mapper, Pasadena, Calif.
970-401-0001
kelly@carbonmapper.org

2024-109

Share

Details

Last Updated
Aug 16, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Electrical engineer Nikolas Gibson performs calibration tests on the MODIS/ASTER Airborne Simulator (MASTER) spectrometer, co-developed by NASA’s Ames Research Center and NASA’s Jet Propulsion Laboratory. Gibson works at the Airborne Sensor Facility at Ames, which builds, maintains, miniaturizes, and calibrates instruments.NASA/Milan Loiacono
      NASA’s Ames Research Center in Silicon Valley houses a unique laboratory: the Airborne Sensor Facility (ASF). The engineers at the ASF are responsible for building, maintaining, and operating numerous instruments that get deployed on research aircraft, but one of their most important roles is instrument calibration.

      Think of calibration like tuning a piano between performances: A musician uses a tuner to set the standard pitch for each string, ensuring that the piano remains on pitch for every concert.

      The “tuners” at ASF include lasers, mirrors, and a light source called an integrating sphere – a hollow sphere about 36 inches in diameter that emits a set amount of light from a hole in the top. By checking an instrument against this baseline between each mission, engineers ensure that the instrument sensors provide accurate, reliable data every time.

      In the photo above, electrical engineer Nikolas Gibson performs calibration tests on the MODIS/ASTER Airborne Simulator (MASTER) spectrometer, co-developed by NASA Ames and NASA’s Jet Propulsion Laboratory in Southern California.

      A spectrometer separates light into individual wavelengths, providing researchers with information about the properties of whatever is creating or interacting with that light. The MASTER instrument measures about 50 individual spectral channels, providing data on wavelengths from the visible spectrum through the infrared.

      When it comes to calibration, each of these channels functions like a specific key on a piano and needs to be individually checked against the “tuner.” By pointing the instrument’s sensor at a known quantity of light coming from the integrating sphere, the team checks the accuracy of MASTER’s data output and repairs or adjusts the sensor as needed.

      In this image, MASTER had returned from an April 2025 scientific campaign observing  prescribed fires in Alabama and Georgia with NASA’s FireSense project. It was recalibrated before heading back into the field for the Geological Earth Mapping Experiment, or GEMx,  mission in late May 2025, which will use the instrument to help map critical minerals across the southwestern United States.
      About the Author
      Milan Loiacono
      Science Communication SpecialistMilan Loiacono is a science communication specialist for the Earth Science Division at NASA Ames Research Center.
      Share
      Details
      Last Updated Jun 11, 2025 Related Terms
      Ames Research Center's Science Directorate Ames Research Center Science Instruments Explore More
      5 min read NASA F-15s Validate Tools for Quesst Mission
      Article 1 day ago 2 min read Dr. Natasha Schatzman Receives Vertical Flight Society (VFS) Award
      Article 5 days ago 2 min read NASA Provides Hardware for Space Station DNA Repair Experiment 
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      The Air Force Aid Society, AFAS, announced a series of bold changes aimed at better supporting the evolving needs of Airmen, Guardians, and their families.
      View the full article
    • By NASA
      Axiom Mission 4 Launches to the International Space Station
    • By Space Force
      The U.S. Space Force debuted its documentary, “Always Above," highlighting the service’s current-day capabilities in space and future efforts. 

      View the full article
  • Check out these Videos

×
×
  • Create New...