Jump to content

NASA Telescopes Work Out Black Hole’s Snack Schedule


Recommended Posts

  • Publishers
Posted
Researchers using Chandra, Swift, and XMM-Newton data have made important headway in understanding how — and when — a supermassive black hole obtains and then consumes material. This artist’s illustration shows a star that has partially been disrupted by a giant black hole in the system known as AT2018fyk. Astronomers correctly predicted when the black hole’s last snack on the star’s debris ended and predicted its next snack would begin between May and August of 2025. As long as the star survives the disruptions, these meals should occur every 3.5 years.
NASA/CXC/M.Weiss

By using new data from NASA’s Chandra X-ray Observatory and Neil Gehrels Swift Observatory as well as ESA’s XMM-Newton, a team of researchers have made important headway in understanding how — and when — a supermassive black hole obtains and then consumes material, as described in our latest press release.

This artist’s impression shows a star that has partially been disrupted by such a black hole in the system known as AT2018fyk. The supermassive black hole in AT2018fyk — with about 50 million times more mass than the sun — is in the center of a galaxy located about 860 million light-years from Earth.

Astronomers have determined that a star is on a highly elliptical orbit around the black hole in AT2018fyk so that its point of farthest approach from the black hole is much larger than its closest. During its closest approach, tidal forces from the black hole pull some material from the star, producing two tidal tails of “stellar debris”.

The illustration shows a point in the orbit soon after the star is partially destroyed, when the tidal tails are still in close proximity to the star. Later in the star’s orbit, the disrupted material returns to the black hole and loses energy, leading to a large increase in X-ray brightness occurring later in the orbit (not shown here). This process repeats each time the star returns to its point of closest approach, which is approximately every 3.5 years. The illustration depicts the star during its second orbit, and the disk of X-ray emitting gas around the black hole that is produced as a byproduct of the first tidal encounter.

Researchers took note of AT2018fyk in 2018 when the optical ground-based survey ASAS-SN detected that the system had become much brighter. After observing it with NASA’s NICER and Chandra, and XMM-Newton, researchers determined that the surge in brightness came from a “tidal disruption event,” or TDE, which signals that a star was completely torn apart and partially ingested after flying too close to a black hole. Chandra data of AT2018fyk is shown in the inset of an optical image of a wider field-of-view.

Researchers took note of AT2018fyk in 2018 when the optical ground-based survey ASAS-SN detected that the system had become much brighter. After observing it with NASA’s NICER and Chandra, and XMM-Newton, researchers determined that the surge in brightness came from a tidal disruption event (TDE), which signals that a star was completely torn apart and partially ingested after flying too close to a black hole. In this image, Chandra data of AT2018fyk is shown as an inset of an optical image of a wider field-of-view of the area.
X-ray: NASA/SAO/Kavli Inst. at MIT/D.R. Pasham; Optical: NSF/Legacy Survey/SDSS

When material from the destroyed star approached close to the black hole, it got hotter and produced X-ray and ultraviolet (UV) light. These signals then faded, agreeing with the idea that nothing was left of the star for the black hole to digest.

However, about two years later, the X-ray and UV light from the galaxy got much brighter again. This meant, according to astronomers, that the star likely survived the initial gravitational grab by the black hole and then entered a highly elliptical orbit with the black hole. During its second close approach to the black hole, more material was pulled off and produced more X-ray and UV light.

Based on what they had learned about the star and its orbit, a team of astronomers predicted that the black hole’s second meal would end in August 2023 and applied for Chandra observing time to check. Chandra observations on August 14, 2023, indeed showed the telltale sign of the black hole feeding coming to an end with a sudden drop in X-rays. The researchers also obtained a better estimate of how long it takes the star to complete an orbit, and predicted future mealtimes for the black hole.

A paper describing these results appears in the August 14, 2024 issue of The Astrophysical Journal and is available online. The authors are Dheeraj Passam (Massachusetts Institute of Technology), Eric Coughlin (Syracuse University), Muryel Guolo (Johns Hopkins University), Thomas Wevers (Space Telescope Science Institute), Chris Nixon (University of Leeds, UK), Jason Hinkle (University of Hawaii at Manoa), and Ananaya Bandopadhyay (Syracuse).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts.

Read more from NASA’s Chandra X-ray Observatory.

For more Chandra images, multimedia and related materials, visit:

https://www.nasa.gov/mission/chandra-x-ray-observatory/

Visual Description:

In this digital illustration, a star sheds stellar debris as it orbits a supermassive black hole. This artist’s impression represents the center of a galaxy about 860 million light-years from Earth.

The supermassive black hole sits at our upper left. It resembles an irregular, pitch-black sphere at the heart of an almond-shaped pocket of swirling sand and dirt. Though gritty in texture, the swirling brown and grey pocket is actually a disk of hot gas.

Near our lower right is the orbiting star. In this illustration, the star is relatively close to us, with the black hole far behind it. The star is a blue-white ball that, from this perspective, appears slightly larger than the distant black hole.

Two tapered streaks peel off of the glowing star like the pulled-back corners of a smile. These streaks represent tidal tails of stellar debris; material pulled from the surface of the star by the gravity of the black hole. This partial destruction of the star occurs every 3.5 years, when the star’s orbit brings it closest to the supermassive black hole.

During the orbit, the stellar debris from the tidal tails is ingested by the black hole. A byproduct of this digestion is the X-ray gas which swirls in a disk around the black hole.

At the upper left of the grid is an image of the distant galaxy cluster known as MACS J0416. Here, the blackness of space is packed with glowing dots and tiny shapes, in whites, purples, oranges, golds, and reds, each a distinct galaxy. Upon close inspection (and with a great deal of zooming in!) the spiraling arms of some of the seemingly tiny galaxies are revealed in this highly detailed image. Gently arched across the middle of the frame is a soft band of purple; a reservoir of superheated gas detected by Chandra.

News Media Contact

Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998

Lane Figueroa
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX Media accreditation is open for the launch of NASA’s 11th rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft carrying astronauts to the International Space Station for a science expedition. NASA’s SpaceX Crew-11 mission is targeted to launch in the late July/early August timeframe from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      The mission includes NASA astronauts Zena Cardman, serving as commander; Mike Fincke, pilot; JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, mission specialist; and Roscosmos cosmonaut Oleg Platonov, mission specialist. This is the first spaceflight for Cardman and Platonov, the fourth trip for Fincke, and the second for Yui, to the orbiting laboratory.
      Media accreditation deadlines for the Crew-11 launch as part of NASA’s Commercial Crew Program are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, July 6. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Monday, July 14. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, July 14.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By NASA
      NASA NASA astronaut Raja Chari and Dr. V. Narayanan, chairman of ISRO (Indian Space Research Organisation), interact outside the Orion spacecraft mockup at NASA’s Johnson Space Center in Houston. Narayanan and Indian officials visited NASA Johnson and NASA’s Kennedy Space Center in Florida, ahead of the Axiom Mission 4 launch to the International Space Station.

      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      Keep Exploring Discover More Topics From NASA
      Low Earth Orbit Economy
      Humans In Space
      Commercial Space
      Private Astronaut Missions
      View the full article
    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...