Jump to content

NASA’s X-59 Progresses Through Tests on the Path to Flight


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A man supporting the installation of the X-59 ejection seat.
NASA Life Support Technician Mathew Sechler provides support as the X-59’s ejection seat is installed into the aircraft at Lockheed Martin Skunk Works’ facilities in Palmdale, California. Completion of the seat’s installation marks an integration milestone for the aircraft as it prepares for final ground tests.
Lockheed Martin

The team preparing NASA’s X-59 continues through testing in preparation for the quiet supersonic aircraft to make its first flight. This includes a trio of important structural tests and critical inspections on the path to flight.

The X-59 is an experimental plane that will fly faster than the speed of sound without a loud sonic boom. It will be the first of its kind to fly, with the goal of gathering sound data for NASA’s Quesst mission, which could open the door to commercial supersonic overland flight in the future.

Because of its unique design, the X-59’s engineering team must do all it can to predict every aspect of it before it ever takes off, including how its fuselage, wings, and the control surfaces will behave together in flight. That means testing on the ground to give the team the data it needs to validate the models they’ve developed.

“The testing not only tells us how structurally sound the aircraft is, but also what kind of forces it can take once it is in the air.

WALT SILVA

WALT SILVA

Senior Research Scientist at NASA Langley Research Center in Hampton, Virginia, who serves as structures lead for the X-59.

The X-59’s structural tests provide the team with valuable feedback. From 2022 to –2024 the engineers collected data on the forces that the aircraft will experience in flight and the potential effects of vibrations on the plane.

“You do these tests, you get the data, and things compare well in some areas and in other areas you want to improve them,” Silva said. “So, you figure that all out and then you work towards making it better.”

Three men installing the
Lockheed Martin technicians temporarily remove the canopy from the X-59 in preparation for final installation of the ejection seat into the aircraft.
Lockheed Martin

Earlier this year, the X-59 underwent structural coupling tests that saw its control surfaces, including its ailerons, flaps and rudder, moved by computer. It was the last of three vital structural tests. In 2023, engineers applied “shakers” to parts of the plane to evaluate its response to vibrations, and in early 2022 they conducted a proof test to ensure the aircraft would absorb the forces it will experience during flight. This year the X-59 ejection seat was installed and passed inspection. The ejection seat is an additional safety measure that is critical for pilot safety during all aspects of flight.

With structural tests and ejection seat installation complete, the aircraft will advance toward a new milestone, starting up its engines for a series of test runs on the ground.

Also ahead for the X-59 is testing the airplane’s avionics and extensive wiring for potential electromagnetic interference, imitating flight conditions in a ground test environment, and finally, completing taxi tests to validate ground mobility before first flight.

“First flights are always very intense,” said Natalie Spivey, aerospace engineer at NASA’s Armstrong Flight Research Center in Edwards, California. “There’s lots of anticipation, but we’re ready to get there and see how the aircraft responds in the air. It’ll be very exciting.”

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test undergoes a free flight test on the City Environment Range Testing for Autonomous Integrated Navigation range at NASA’s Langley Research Center in Hampton, Virginia on April 22, 2025.NASA/Rob Lorkiewicz Flying the friendly skies may one day include time-saving trips in air taxis to get from point A to point B – and NASA researchers are currently working to make that future a reality.
      They are using wind tunnel and flight tests to gather data on an electric Vertical takeoff and landing (eVTOL) scaled-down small aircraft that resembles an air taxi that aircraft manufacturers can use for their own designs.
      As air taxis take to the skies, engineers need real-world data on air taxi designs to better understand flight dynamics and design better flight control systems. These systems help stabilize and guide the motion of an aircraft while in flight, making sure it flies safely in various conditions.
      Currently, most companies developing air taxis keep the information about how their aircraft behaves internal, so NASA is using this small aircraft to produce public, non-proprietary data available to all.
      “NASA’s ability to perform high-risk flight research for increasingly automated and autonomous aircraft is really important,” said Siena Whiteside, who leads the Research Aircraft for eVTOL Enabling techNologies (RAVEN) project. “As we investigate these types of vehicles, we need to be able push the aircraft to its limits and understand what happens when an unforeseen event occurs…”
      For example, Whiteside said, “…when a motor stops working. NASA is willing to take that risk and publish the data so that everyone can benefit from it.”
      Researchers Jody Miller, left, and Brayden Chamberlain, right, stand by a crane that is used for tethered flight testing of the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Oct. 18, 2024.NASA/Ben Simmons Testing Air Taxi Tech
      By using a smaller version of a full-sized aircraft called the RAVEN Subscale Wind Tunnel and Flight Test (RAVEN SWFT) vehicle, NASA is able to conduct its tests in a fast and cost-effective manner.
      The small aircraft weighs 38 pounds with a wingspan of six feet and has 24 independently moving components.
      Each component, called a “control effector,” can move during flight to change the aircraft’s motion – making it an ideal aircraft for advanced flight controls and autonomous flight research.
      The testing is ongoing at NASA’s Langley Research Center in Hampton, Virginia.
      Researchers first used the center’s 12-Foot Low-Speed Tunnel in 2024 and have since moved on to flight testing the small aircraft, piloting it remotely from the ground. During initial flight tests, the aircraft flew while tied to a tether. Now, the team performs free flights.
      Lessons learned from the aircraft’s behavior in the wind tunnel helped to reduce risks during flight tests. In the wind tunnel, researchers performed tests that closely mirror the motion of real flight.
      While the scale aircraft was in motion, researchers collected information about its flight characteristics, greatly accelerating the time from design to flight.
      The team also could refine the aircraft’s computer control code in real time and upload software changes to it in under 5 minutes, saving them weeks and increasing the amount of data collected.
      Researchers Ben Simmons, left, and Greg Howland, right, upload software changes in real time to the Research Aircraft for electric Vertical takeoff and landing Enabling techNologies Subscale Wind Tunnel and Flight Test at NASA’s Langley Research Center in Hampton, Virginia on Aug. 8, 2024, during testing in the 12-Foot Low-Speed Tunnel.NASA/David C. Bowman Partners in Research
      NASA developed the custom flight controls software for RAVEN SWFT using tools from the company MathWorks.
      NASA and MathWorks are partners under a Space Act Agreement to accelerate the design and testing of flight control approaches on RAVEN SWFT, which can apply to future novel aircraft.
      The work has allowed NASA’s researchers to develop new methods to reduce the time for an aircraft to achieve its first flight and become a finished product.
      RAVEN SWFT serves as a steppingstone to support the development of a potential larger, 1,000 pound-class RAVEN aircraft that will resemble an air taxi.
      This larger RAVEN aircraft is being designed in collaboration with Georgia Institute of Technology and also would serve as an acoustical research tool, helping engineers understand the noise air taxi-like aircraft create.
      The larger aircraft would allow NASA to continue to collect data and share it openly.  
      By performing flight research and making its data publicly available, NASA aims to advance U.S. leadership in technology development for safe, quiet, and affordable advanced air mobility operations.
      Watch this Air Taxi Tests Video
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      4 min read NASA Seeks Moon and Mars Innovations Through University Challenge
      Article 14 hours ago 3 min read NASA Uses Wind Tunnel to Test Advanced Air Mobility Aircraft Wing
      Article 7 days ago 3 min read Three NASA Langley Employees Win Prestigious Silver Snoopy Awards 
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Aug 13, 2025 EditorJim BankeContactDiana Fitzgeralddiana.r.fitzgerald@nasa.govLocationNASA Langley Research Center Related Terms
      Aeronautics Advanced Air Mobility Aeronautics Research Mission Directorate Drones & You Flight Demos Capabilities Integrated Aviation Systems Program Langley Research Center NASA Aircraft Transformational Tools Technologies Transformative Aeronautics Concepts Program View the full article
    • By NASA
      National Institute of Aerospace NASA is calling on the next generation of collegiate innovators to imagine bold new concepts l pushing the boundaries of human exploration on the Moon, Mars, and beyond through the agency’s 2026 NASA Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.  
      The RASC-AL challenge fuels innovation for aerospace systems concepts, analogs, and technology prototyping by bridging gaps through university engagement with NASA and industry. The competition is seeking U.S.-based undergraduate and graduate-level teams and their faculty advisors to develop new concepts to improve our ability to operate on the Moon and Mars. This year’s themes range from developing systems and technologies to support exploration of the lunar surface, to enhancing humanity’s ability to operate and return data from the surface of Mars.  
      “This competition is a unique opportunity for university students to play a role in the future of space innovation,” said Dan Mazanek, assistant branch head of NASA’s Exploration Space Mission Analysis Branch at NASA’s Langley Research Center in Hampton Virginia. “The RASC-AL challenge fuels creativity and empowers students to explore what’s possible. We’re excited for another year of RASC-AL and fresh ideas coming our way.”  
      Interested and eligible teams are invited to propose groundbreaking solutions and systems approaches that redefine how humans live and explore in deep space with relation to one of the following themes:  
      Communications, Positioning, Navigation, and Timing Architectures for Mars Surface Operations  Lunar Surface Power and Power Management and Distribution Architectures   Lunar Sample Return Concept  Lunar Technology Demonstrations Leveraging Common Infrastructure   Teams should express their intent to participate by submitting a non-binding notice of intent by Monday Oct. 13. Teams who submit a notice will be invited to a question-and-answer session with NASA subject matter experts on Monday Oct. 27.  
      The proposals, due Monday Feb. 23, 2026, are required to be seven-to-nine pages with an accompanying two-to-three-minute video. Proposals should demonstrate innovative solutions with original engineering and analysis in response to one of the four 2026 RASC-AL themes. Each team’s response should address novel and robust technologies, capabilities, and operational models that support expanding human’s ability to thrive beyond Earth. 
      Based on review of the team proposal and video submissions, in March, up to 14 teams will be selected to advance to the final phase of the competition – writing a technical paper, creating a technical poster, and presenting their concepts to a panel of NASA and industry experts in a competitive design review at the 2026 RASC-AL Forum in Cocoa Beach, Florida, beginning Monday June 1, 2026. 
      “The RASC-AL challenge enables students to think like NASA engineers—and in doing so, they often become the engineers who will carry NASA forward,” said Dr. Christopher Jones, RASC-AL program sponsor and Chief Technologist for the Systems Analysis and Concepts Directorate at NASA Langley. “The concepts they develop for this year’s competition will help inform our future strategies.”  
      Each finalist team will receive a $7,000 stipend to facilitate their full participation in the 2026 RASC-AL competition, and the top two overall winning teams will each be awarded an additional $7,000 cash prize as well as an invitation to attend and present their concept at an aerospace conference later in 2026. 
      The 2026 NASA RASC-AL competition is administered by the National Institute of Aerospace on behalf of NASA. The RASC-AL competition is sponsored by the agency’s Strategy and Architecture Office in the Exploration Systems Development Mission Directorate at NASA Headquarters, the Space Technology Mission Directorate (STMD), and the Systems Analysis and Concepts Directorate at NASA Langley. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing Program in STMD, manages the challenge. 
      For more information about the RASC-AL competition, including eligibility and submission guidelines, visit: https://rascal.nianet.org/. 
      View the full article
    • By NASA
      NASA Glenn Research Center High School Engineering Institute participants, left to right: Evan Ricchetti, Edan Liahovetsky, and Doris Chen, prepare to add weights to their rover to test the effectiveness of their wheel grouser designs on Friday, July 18, 2025. Credit: NASA/Jef Janis  This summer, NASA’s Glenn Research Center in Cleveland hosted the NASA Glenn High School Engineering Institute, a free, work-based learning experience designed to prepare rising high school juniors and seniors for careers in the aerospace workforce. 
      “The institute immerses students in NASA’s work, providing essential career readiness tools for future science, technology, engineering, and mathematics-focused academic and professional pursuits,” said Jerry Voltz of NASA Glenn’s Office of STEM Engagement. 
      Throughout the five-day sessions (offered three separate weeks in July), students used authentic NASA mission content and collaborated with Glenn’s technical experts. They gained a deeper understanding of the engineering design process, developed practical engineering solutions to real-world challenges, and tested prototypes to address key mission areas such as: 
      Acoustic dampening: How can we reduce noise pollution from jet engines?  Power management and distribution: How can we develop a smart power system for future space stations?  Simulated lunar operations: Can we invent tires that don’t use air?  NASA Glenn Research Center High School Engineering Institute participants, left to right: Adriana Pudloski, Anadavel Sakthi, Aditya Rohatgi, and Alexa Apshago, make modifications to the control system program for their rover on Friday, July 18, 2025. Credit: NASA/Jef Janis  Voltz said he hoped students left the program with three key takeaways: a deeper curiosity and excitement for STEM careers, firsthand insight into how cutting-edge technology developed in Cleveland contributes to NASA’s most prominent missions, and most importantly, a feeling of empowerment gained from engaging with some of NASA’s brightest minds in the field. 
      Return to Newsletter View the full article
    • By European Space Agency
      Earth orbit is becoming increasingly crowded. With over 11 000 active satellites and many thousands more expected in the coming years as well as over 1.2 million pieces of space debris greater than 1 cm, the risk of in-orbit collisions has turned into a daily operational concern. ESA is investing in automation technologies that can help satellite operators respond more effectively to collision risks.
      View the full article
    • By Space Force
      Integration between the U.S. and its Allies is a consistent focal point for the U.S. Space Force, with critical command and control and operational elements of Allied partnerships being tested and validated in Resolute Space 2025.

      View the full article
  • Check out these Videos

×
×
  • Create New...