Members Can Post Anonymously On This Site
Local Creators Learn About NASA’s Iconic Logo
-
Similar Topics
-
By NASA
NASA’s IMAP (Interstellar Mapping and Acceleration Probe) mission will map the boundaries of the heliosphere, the bubble created by the solar wind that protects our solar system from cosmic radiation. Credit: NASA/Princeton/Patrick McPike NASA will hold a media teleconference at 12 p.m. EDT on Thursday, Sept. 4, to discuss the agency’s upcoming Sun and space weather missions, IMAP (Interstellar Mapping and Acceleration Probe) and Carruthers Geocorona Observatory. The two missions are targeting launch on the same rocket no earlier than Tuesday, Sept. 23.
The IMAP mission will map the boundaries of our heliosphere, the vast bubble created by the Sun’s wind that encapsulates our entire solar system. As a modern-day celestial cartographer, IMAP will explore how the heliosphere interacts with interstellar space, as well as chart the range of particles that fill the space between the planets. The IMAP mission also will support near real-time observations of the solar wind and energetic particles. These energetic particles can produce hazardous space weather that can impact spacecraft and other NASA hardware as the agency explores deeper into space, including at the Moon under the Artemis campaign.
NASA’s Carruthers Geocorona Observatory will image the ultraviolet glow of Earth’s exosphere, the outermost region of our planet’s atmosphere. This data will help scientists understand how space weather from the Sun shapes the exosphere and ultimately impacts our planet. The first observation of this glow – called the geocorona – was captured during Apollo 16, when a telescope designed and built by George Carruthers was deployed on the Moon.
Audio of the teleconference will stream live on the agency’s website at:
https://www.nasa.gov/live
Participants include:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters in Washington Teresa Nieves-Chinchilla, director, Moon to Mars Space Weather Analysis Office, NASA’s Goddard Space Flight Center in Greenbelt, Maryland David J. McComas, IMAP principal investigator, Princeton University Lara Waldrop, Carruthers Geocorona Observatory principal investigator, University of Illinois Urbana-Champaign To participate in the media teleconference, media must RSVP no later than 11 a.m. on Sept. 4 to Sarah Frazier at: sarah.frazier@nasa.gov. NASA’s media accreditation policy is available online.
The IMAP and Carruthers Geocorona Observatory missions will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Also launching on this flight will be the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow On – Lagrange 1 (SWFO-L1), which will monitor solar wind disturbances and detect and track coronal mass ejections before they reach Earth.
David McComas, professor, Princeton University, leads the IMAP mission with an international team of 27 partner institutions. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built the spacecraft and will operate the mission. NASA’s IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio.
The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. Mission implementation is led by the Space Sciences Laboratory at University of California, Berkeley, which also designed and built the two ultraviolet imagers. BAE Systems designed and built the Carruthers spacecraft.
The Solar Terrestrial Probes Program Office, part of the Explorers and Heliophysics Project Division at NASA Goddard, manages the IMAP and Carruthers Geocorona Observatory missions for NASA’s Science Mission Directorate.
NASA’s Launch Services Program, based at NASA Kennedy, manages the launch service for the mission.
To learn more about IMAP, please visit:
https://www.nasa.gov/imap
-end-
Abbey Interrante / Karen Fox
Headquarters, Washington
301-201-0124 / 202-358-1600
abbey.a.interrante@nasa.gov / karen.c.fox@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
Share
Details
Last Updated Aug 28, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Heliophysics Carruthers Geocorona Observatory (GLIDE) Goddard Space Flight Center Heliophysics Division Heliosphere IMAP (Interstellar Mapping and Acceleration Probe) Kennedy Space Center Launch Services Program Science Mission Directorate Solar Terrestrial Probes Program View the full article
-
By NASA
Explore This Section Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
Linking Local Lithologies to a Larger Landscape
This image from NASA’s Mars Perseverance rover, taken by the Mastcam-Z instrument’s right eye, shows a collection of ridge-forming boulders. The rover acquired this image looking south along the ridge while exploring the “Westport” region of the outer crater rim on July 18, 2025 — Sol 1568, or Martian day 1,568 of the Mars 2020 mission — at the local mean solar time of 11:53:04. NASA/JPL-Caltech/ASU Written by Margaret Deahn, Ph.D. Student at Purdue University
NASA’s Mars 2020 rover is continuing to explore a boundary visible from orbit dividing bright, fractured outcrop from darker, smoother regolith (also known as a contact). The team has called this region “Westport,” (a fitting title, as the rover is exploring the western-most rim of Jezero), which hosts a contact between the smoother, clay-bearing “Krokodillen” unit and an outcrop of olivine-bearing boulders that converge to form a ridge on the outer Jezero crater rim. To learn more about the nature of this contact, see this blog post by Dr. Melissa Rice. Piecing together geologic events like the formation of this olivine-bearing material on Jezero’s crater rim may allow us to better understand Mars’ most ancient history.
The rover has encountered several olivine-bearing rocks while traversing the rim, but it is unclear if, and how these rocks are all connected. Jezero crater is in a region of Mars known as Northeast Syrtis, which hosts the largest contiguous exposure (more than 113,000 square kilometers, or more than 43,600 square miles) of olivine-rich material identified from orbit on Mars (about the same square mileage as the state of Ohio!). The olivine-rich materials are typically found draping over older rocks, often infilling depressions, which may provide clues to their origins. Possible origins for the olivine-rich materials in Northeast Syrtis may include (but are not limited to): (1) intrusive igneous rocks (rocks that cool from magma underground), (2) melt formed and deposited during an impact event, or (3) pyroclastic ash fall or flow from a volcanic eruption.
The Perseverance rover’s investigation of the olivine-bearing materials on the rim of Jezero crater may allow us to better constrain the history of the broader volcanic units present in the Northeast Syrtis region. Olivine-rich material in Northeast Syrtis is consistently sandwiched between older, clay-rich rock and younger, more olivine-poor material (commonly referred to as the “mafic capping” unit), and may act as an important marker for recording early alteration by water, which could help us understand early habitable environments on Mars. We see potential evidence of all of these units on Jezero crater’s rim based on orbital mapping. If the olivine-bearing rocks the Perseverance rover is encountering on the rim are related to these materials, we may be able to better constrain the age of this widespread geologic unit on Mars.
Learn more about Perseverance’s science instruments
For more Perseverance blog posts, visit Mars 2020 Mission Updates
Share
Details
Last Updated Aug 07, 2025 Related Terms
Blogs Explore More
3 min read Curiosity Blog, Sols 4622-4623: Kicking Off (Earth) Year 14 With an Investigation of Veins
Article
18 hours ago
3 min read Curiosity Blog, Sols 4618-4619: The Boxwork Structures Continue to Call to Us
Article
2 days ago
3 min read Curiosity Blog, Sols 4620-4621: Among the Hollows and the Ridges
Article
2 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
Students take a tour of the Glenn International Space Station Payload Operations Center at NASA’s Glenn Research Center in Cleveland, where researchers operate International Space Station experiments, during 4-H Day on June 14, 2024.Credit: NASA/Jef Janis Ohio middle school students will step into the shoes of real-world NASA professionals for a day of career exploration and hands-on activities at NASA’s Glenn Research Center in Cleveland. Nearly 200 students are slated to participate in TECH Day at NASA Glenn on May 1, from 10 a.m. to 1 p.m. Media are invited to attend.
TECH Day is designed to inspire and inform the next generation of innovators by introducing them to clear and attainable career pathways into the aerospace industry. Students will tour NASA Glenn facilities, participate in an interactive engineering challenge, and engage with professionals to learn about the wide range of careers in STEM fields.
Student tours will include the following Glenn facilities:
Graphics and Visualization Lab, where researchers create engaging projects using virtual and augmented reality Glenn International Space Station Payload Operations Center, where researchers remotely operate experiments aboard the International Space Station Simulated Lunar Operations Laboratory, a unique indoor space designed to mimic the surface of the Moon and Mars 10×10 Supersonic Wind Tunnel, NASA Glenn’s largest and fastest wind tunnel facility Creating Clear Pathways
Developing early and accessible entry points into STEM careers is essential to meeting the growing demand for a skilled technical workforce. NASA STEM engagement events help students visualize their future and better understand the technical experience needed for a career in the aerospace sector. Opportunities like this equip students with the skills to further technological advancement and become the STEM professionals of tomorrow.
Media interested in attending should contact Jacqueline Minerd at jacqueline.minerd@nasa.gov no later than 5 p.m. Wednesday, April 30. Interviews with experts will take place from 9 to 10 a.m.
For more information on NASA Glenn, visit:
https://www.nasa.gov/glenn
-end-
Jacqueline Minerd
Glenn Research Center, Cleveland
216-433- 6036
jacqueline.minerd@nasa.gov
View the full article
-
By NASA
Artemis II crew members and U.S. Navy personnel practice recovery procedures in the Pacific Ocean using a test version of NASA’s Orion spacecraft in February 2024. Credit: NASA NASA and the Department of Defense will host a media event on the recovery operations that will bring the Artemis II astronauts and the agency’s Orion spacecraft home at the conclusion of next year’s mission around the Moon. The in-person event will take place at 3 p.m. PDT on Monday, March 31, at Naval Base San Diego in California.
A team of NASA and Department of Defense personnel are at sea in the Pacific Ocean where splashdown will take place. The team currently is practicing the procedures it will use to recover the astronauts after their more than 600,000 mile journey from Earth and back on the first crewed mission under the Artemis campaign. A test version of Orion and other hardware also will be on-hand for media representatives to view.
Interested media must RSVP no later than 4 p.m. PDT Friday, March 28, to Naval Base San Diego Public Affairs at nbsd.pao@us.navy.mil or 619-556-7359. The start time of the event may change based on the conclusion of testing activities.
Participants include:
Liliana Villarreal, NASA’s Artemis II landing and recovery director, Exploration Ground Systems Program, NASA’s Kennedy Space Center in Florida Capt. Andrew “Andy” Koy, commanding officer of USS Somerset (LPD 25), U.S. Navy Lt. Col. David Mahan, commander, U.S. Air Force’s 1st Air Force, Detachment 3, Patrick Space Force Base, Florida Several astronauts participating in the testing will be available for interviews.
Artemis II will be the first test flight of the SLS (Space Launch System) rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
Learn more about Artemis II at:
https://www.nasa.gov/mission/artemis-ii/
-end-
Jim Wilson
Headquarters, Washington
202-358-1100
jim.wilson@nasa.gov
Madison Tuttle/Allison Tankersley
Kennedy Space Center, Florida
321-298-5968/321-867-2468
madison.e.tuttle@nasa.gov / allison.p.tankersley@nasa.gov
Share
Details
Last Updated Mar 25, 2025 LocationNASA Headquarters Related Terms
Artemis 2 Kennedy Space Center NASA Headquarters View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.