Jump to content

Cleveland High School Students Land STEM Career Exploration Experience 


Recommended Posts

  • Publishers
Posted

1 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

NASA subject matter expert talks with students in lab coats, right, about equipment in the ISS Payload Operations Center.
NASA Glenn Research Center’s Amber Krauss talks to students about how NASA uses ground integration units to prepare for flight science operations.
Credit: NASA/Jef Janis 

This summer, 10 Cleveland Metropolitan School District (CMSD) students landed the opportunity to participate in the NASA Glenn High School Career Exploration and Research Experience program at NASA’s Glenn Research Center in Cleveland. 

High school students were paired with a mentor in their field of study who they shadowed for eight weeks during a hands-on workplace experience exploring their interests. The students prepared presentations to highlight their experiences and discussed how the program will impact their career choices. 

A NASA subject matter expert, left, explains details to four students about the ISS Payload Operations Center. Several monitors tracking experiments are in the background.
NASA Glenn Research Center’s Henry Nahra shares details about Glenn’s ISS Payload Operations Center with Glenn Career Exploration and Research Experience program students.
Credit: NASA/Jef Janis 

“This opportunity has substantially helped me develop my soft skills and technical skills,” said CSMD participant JayLeesa Jones. “I have come to realize that I can reach new heights as an intern, team member, and aspiring engineer!” 

This unique, paid STEM engagement learning experience is part of a series of NASA Glenn programs focused on attracting and retaining a diverse, skilled workforce. The Glenn Career Exploration and Research Experience program is made possible through a Space Act Agreement between NASA Glenn and Youth Opportunities Unlimited.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Lisa Pace knows a marathon when she sees one. An avid runner, she has participated in five marathons and more than 50 half marathons. Though she prefers to move quickly, she also knows the value of taking her time. “I solve most of my problems while running – or realize those problems aren’t worth worrying about,” she said.

      She has learned to take a similar approach to her work at NASA’s Johnson Space Center in Houston. “Earlier in my career, I raced to get things done and felt the need to do as much as possible on my own,” she said. “Over time, I’ve learned to trust my team and pause to give others an opportunity to contribute. There are times when quick action is needed, but it is often a marathon, not a sprint.”

      Official portrait of Lisa Pace.NASA/Josh Valcarcel Pace is chief of the Exploration Development Integration Division within the Exploration Architecture, Integration, and Science Directorate at Johnson. In that role, she leads a team of roughly 120 civil servants and contractors in providing mission-level system engineering and integration services that bring different architecture elements together to achieve the agency’s goals. Today that team supports Artemis missions, NASA’s Commercial Lunar Payload Services initiative and other areas as needed.

      Lisa Pace, seated at the head of the table, leads an Exploration Development Integration Division team meeting at NASA’s Johnson Space Center in Houston. NASA/James Blair “The Artemis missions come together through multiple programs and projects,” Pace explained. “We stitch them together to ensure the end-to-end mission meets its intended requirements. That includes verifying those requirements before flight and ensuring agreements between programs are honored and conflicts resolved.” The division also manages mission-level review and flight readiness processes from planning through execution, up to the final certification of flight readiness.

      Leading the division through the planning, launch, and landing of Artemis I was a career highlight for Pace, though she feels fortunate to have worked on many great projects during her time with NASA. “My coolest and most rewarding project involved designing and deploying an orbital debris tracking telescope on Ascension Island about 10 years ago,” she said. “The engineers, scientists, and military personnel I got to work and travel with on that beautiful island is tough to top!”  

      Pace says luck and great timing led her to NASA. Engineering jobs were plentiful when she graduated from Virginia Tech in 2000, and she quickly received an offer from Lockheed Martin to become a facility engineer in Johnson’s Astromaterials Research and Exploration Science Division, or ARES. “I thought working in the building where they keep the Moon rocks would be cool – and it was! Twenty-five years later, I’m still here,” Pace said.

      During that time, she has learned a lot about problem-solving and team building. “I often find that when we disagree over the ‘right’ way to do something, there is no one right answer – it just depends on your perspective,” she said. “I take the time to listen to people, understand their side, and build relationships to find common ground.”

      Lisa Pace, right, participates in a holiday competition hosted by her division.Image courtesy of Lisa Pace She also emphasizes the importance of getting to know your colleagues. “Relationships are everything,” she said. “They make the work so much more meaningful. I carry that lesson over to my personal life and value my time with family and friends outside of work.”

      Investing time in relationships has given Pace another unexpected skill – that of matchmaker. “I’m responsible for setting up five couples who are now married, and have six kids between them,” she said, adding that she knew one couple from Johnson.

      She hopes that strong relationships transfer to the Artemis Generation. “I hope to pass on a strong NASA brand and the family culture that I’ve been fortunate to have, working here for the last 25 years.”
      Explore More
      3 min read Meet Rob Navias: Public Affairs Officer and Mission Commentator  
      Article 5 days ago 5 min read Heather Cowardin Safeguards the Future of Space Exploration  
      Article 1 week ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars
      Article 2 weeks ago View the full article
    • By NASA
      NASA astronaut Nichole Ayers conducts research operations inside the Destiny laboratory module’s Microgravity Science Glovebox aboard the International Space Station.Credit: NASA Students attending the U.S. Space and Rocket Center Space Camp in Huntsville, Alabama, will have the chance to hear NASA astronauts aboard the International Space Station answer their prerecorded questions.
      At 12:40 p.m. EDT on Tuesday, July 1, NASA astronauts Anne McClain, Jonny Kim, and Nichole Ayers will answer student questions. Ayers is a space camp alumna.
      Watch the 20-minute Earth-to-space call on the NASA STEM YouTube Channel.
      The U.S. Space and Rocket Center will host the downlink while celebrating the 65th anniversary of NASA’s Marshall Space Flight Center. This event is open to the public.
      Media interested in covering the event must RSVP by 5 p.m., Friday, June 27, to Pat Ammons at: 256-721-5429 or pat.ammons@spacecamp.com.
      For nearly 25 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Golden Age explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos of astronauts aboard the space station at:
      https://www.nasa.gov/stemonstation
      -end-
      Gerelle Dodson
      Headquarters, Washington
      202-358-1600
      gerelle.q.dodson@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Jun 25, 2025 LocationNASA Headquarters Related Terms
      Humans in Space In-flight Education Downlinks International Space Station (ISS) Johnson Space Center Learning Resources NASA Headquarters View the full article
    • By NASA
      Explore This SectionScience Europa Clipper Buoyant Rover for Under Ice… Europa Clipper Home MissionOverview Facts History Timeline ScienceGoals Team SpacecraftMeet Europa Clipper Instruments Assembly Vault Plate Message in a Bottle NewsNews & Features Blog Newsroom Replay the Launch MultimediaFeatured Multimedia Resources About EuropaWhy Europa? Europa Up Close Ingredients for Life Evidence for an Ocean   To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Researchers at NASA’s Jet Propulsion Laboratory are developing the Buoyant Rover for Under-Ice Exploration, a technology that could one day explore oceans under the ice layers of planetary bodies. The prototype was tested in arctic lakes near Barrow, Alaska. Researchers at NASA’s Jet Propulsion Laboratory are developing the Buoyant Rover for Under-Ice Exploration, a technology that could one day explore oceans under the ice layers of planetary bodies. The prototype was tested in arctic lakes near Barrow, Alaska.
      Keep Exploring Discover More Topics From NASA
      Europa Clipper Resources
      Jupiter
      Jupiter Moons
      Science Missions
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Some career changes involve small shifts. But for one NASA engineering intern, the leap was much bigger –moving from under the hood of a car to helping air taxis take to the skies.
      Saré Culbertson spent more than a decade in the auto industry and had been working as a service manager in busy auto repair shops. Today, she supports NASA’s Air Mobility Pathfinders project as a flight operations engineer intern at NASA’s Armstrong Flight Research Center in Edwards, California, through NASA’s Pathways program.
      “NASA has helped me see opportunities I didn’t even know existed
      Saré Culbertson
      NASA Intern
      “NASA has helped me see opportunities I didn’t even know existed,” she said. “I realized that being good at something isn’t enough – you have to be passionate about it too.”
      With a strong foundation in mechanical engineering – earning a bachelor’s degree from California State University, Long Beach, Antelope Valley Engineering Program – she graduated magna cum laude and delivered her class’s commencement speech. Culbertson also earned two associate’s degrees, one in engineering and one in fine arts.
      NASA Pathways intern Saré Culbertson, right, works with NASA operations engineer Jack Hayes at NASA’s Armstrong Flight Research Center in Edwards, California, on Nov. 7, 2024. They are verifying GPS and global navigation satellite system coordinates using Emlid Reach RS2+ receiver equipment, which supports surveying, mapping, and navigation in preparation for future air taxi test flight research.NASA/Genaro Vavuris Before making the switch to aeronautics, she worked at car dealerships and independent car repair facilities while in college. She also led quality control efforts to help a manufacturer meet international standards for quality.
      “I never thought land surveying would have anything to do with flying. But it’s a key part of supporting our research with GPS and navigation verification,” Culbertson said. “GPS measures exact positions by analyzing how long signals take to travel from satellites to ground receivers. In aviation testing, it helps improve safety by reducing signal errors and ensuring location data of the aircraft is accurate and reliable.”
      A musician since childhood, Culbertson has also performed in 21 states, playing everything from tuba to trumpet, and even appeared on HBO’s “Silicon Valley” with her tuba. She’s played in ska, punk, and reggae bands and now performs baritone in the Southern Sierra Pops Orchestra.
      Saré Culbertson, NASA Pathways intern at NASA’s Armstrong Flight Research Center in Edwards, California, adjusts the Emlid Reach RS2+ receiver equipment that connects with GPS and global navigation satellite systems on Nov. 7, 2024, in preparation for future air taxi test flight research.NASA/Genaro Vavuris The NASA Pathways internship, she says, changed everything. Culbertson was recently accepted into the Master of Science in Flight Test Engineering program at the National Test Pilot School, where she will be specializing in fixed wing performance and flying qualities.
      Her advice for anyone starting out?
      “Listen more than you talk,” she said. “Don’t get so focused on the next promotion that you forget to be great at the job you have now.”
      During her internship, Culbertson is making meaningful contributions toward NASA’s Urban Air Mobility research. She collects location data for test landing sites as part of the first evaluation of an experimental commercial electric vertical takeoff landing aircraft, a significant milestone in the development of next generation aviation technologies. From fixing cars to helping air taxis become a reality, Saré Culbertson is proof that when passion meets persistence, the sky isn’t the limit – it’s just the beginning.
      Share
      Details
      Last Updated Jun 23, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Air Mobility Pathfinders project Careers Internships What We Do Explore More
      3 min read NASA Air Taxi Passenger Comfort Studies Move Forward
      Article 3 days ago 2 min read NASA Aircraft to Make Low-Altitude Flights in Mid-Atlantic, California
      Article 3 days ago 4 min read NASA to Gather In-Flight Imagery of Commercial Test Capsule Re-Entry
      Article 5 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 Min Read Heather Cowardin Safeguards the Future of Space Exploration  
      As branch chief of the Hypervelocity Impact and Orbital Debris Office at NASA’s Johnson Space Center in Houston, Dr. Heather Cowardin leads a team tasked with a critical mission: characterizing and mitigating orbital debris—space junk that poses a growing risk to satellites, spacecraft, and human spaceflight. 
      Long before Cowardin was a scientist safeguarding NASA’s mission, she was a young girl near Johnson dreaming of becoming an astronaut.  
      “I remember driving down Space Center Boulevard with my mom and seeing people running on the trails,” she said. “I told her, ‘That will be me one day—I promise!’ And she always said, ‘I know, honey—I know you will.’” 
      Official portrait of Heather Cowardin. NASA/James Blai I was committed to working at NASA—no matter what it took.
      Heather Cowardin
      Hypervelocity Impact and Orbital Debris Branch Chief
      Today, that childhood vision has evolved into a leadership role at the heart of NASA’s orbital debris research. Cowardin oversees an interdisciplinary team within the Astromaterials Research and Exploration Science Division, or ARES. She supports measurements, modeling, risk assessments, and mitigation strategies to ensure the efficiency of space operations.  
      With more than two decades of experience, Cowardin brings expertise and unwavering dedication to one of the agency’s most vital safety initiatives. 
      Her work focuses on characterizing Earth-orbiting objects using optical and near-infrared telescopic and laboratory data. She helped establish and lead the Optical Measurement Center, a specialized facility at Johnson that replicates space-like lighting conditions and telescope orientations to identify debris materials and shapes, and evaluate potential risk. 
      Cowardin supports a range of research efforts, from ground-based and in-situ, or in position, observations to space-based experiments. She has contributed to more than 100 scientific publications and presentations and serves as co-lead on Materials International Space Station Experiment missions, which test the durability of materials on the exterior of the orbiting laboratory. 
      She is also an active member of the Inter-Agency Space Debris Coordination Committee, an international forum with the goal of minimizing and mitigating the risks posed by space debris.  
      Heather Cowardin, left, holds a spectrometer optical feed as she prepares to take a spectral measurement acquisition on the returned Wide Field Planetary Camera 2 radiator. It was inspected by the Orbital Debris Program Office team for micrometeoroid and orbital debris impacts at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2009, and later studied for space weathering effects on its painted surface. Her passion was fueled further by a mentor, Dr. James R. Benbrook, a University of Houston space physics professor and radar scientist supporting the Orbital Debris Program Office. “He was a hard-core Texas cowboy and a brilliant physicist,” she said. “He brought me on as a NASA fellow to study orbital debris using optical imaging. After that, I was committed to working at NASA—no matter what it took.” 
      After completing her fellowship, Cowardin began graduate studies at the University of Houston while working full time. Within a year, she accepted a contract position at Johnson, where she helped develop the Optical Measurement Center and supported optical analyses of geosynchronous orbital debris. She soon advanced to optical lead, later serving as a contract project manager and section manager. 
      Heather Cowardin inspects targets to study the shapes of orbital debris using the Optical Measurement Center at NASA’s Johnson Space Center in Houston. What we do at NASA takes new thinking, new skills, and hard work—but I believe the next generation will raise the bar and lead us beyond low Earth orbit.
      Heather Cowardin
      Hypervelocity Impact and Orbital Debris Branch Chief
      Building on her growing expertise, Cowardin became the laboratory and in-situ measurements lead for the Orbital Debris Program Office, a program within the Office of Safety and Mission Assurance at NASA Headquarters. She led efforts to characterize debris and deliver direct measurement data to support orbital debris engineering models, such as NASA’s Orbital Debris Engineering Model and NASA’s Standard Satellite Breakup Model, while also overseeing major projects like DebriSat.  
      Cowardin was selected as the Orbital Debris and Hypervelocity Integration portfolio scientist, where she facilitated collaboration within the Hypervelocity Impact and Orbital Debris Office—both internally and externally with stakeholders and customers. These efforts laid the foundation for her current role as branch chief. 
      “I’ve really enjoyed reflecting on the path I’ve traveled and looking forward to the challenges and successes that lie ahead with this great team,” she said.  
      One of Cowardin’s proudest accomplishments was earning her doctorate while working full time and in her final trimester of pregnancy. 
      “Nothing speaks to multitasking and time management like that achievement,” Cowardin said. “I use that story to mentor others—it’s proof that you can do both. Now I’m a mom of two boys who inspire me every day. They are my motivation to work harder and show them that dedication and perseverance always pay off.” 
      From left to right: Heather Cowardin, her youngest child Jamie, her husband Grady, and her oldest child Trystan. The family celebrates Jamie’s achievement of earning a black belt. Throughout her career, Cowardin said one lesson has remained constant: never underestimate yourself. 
      “It’s easy to think, ‘I’m not ready,’ or ‘Someone else will ask the question,’” she said. “But speak up. Every role I’ve taken on felt like a leap, but I embraced it and each time I’ve learned and grown.” 
      She has also learned the value of self-awareness. “It’s scary to ask for feedback, but it’s the best way to identify growth opportunities,” she said. “The next generation will build on today’s work. That’s why we must capture lessons learned and share them. It’s vital to safe and successful operations.” 
      Heather Cowardin, fifth from left, stands with fellow NASA delegates at the 2024 Inter-Agency Space Debris Coordination Committee meeting hosted by the Indian Space Research Organisation in Bengaluru, India. The U.S. delegation included representatives from NASA, the Department of Defense, the Federal Aviation Administration, and the Federal Communications Commission. To the Artemis Generation, she hopes to pass on a sense of purpose. 
      “Commitment to a mission leads to success,” she said. “Even if your contributions aren’t immediately visible, they matter. What we do at NASA takes new thinking, new skills, and hard work—but I believe the next generation will raise the bar and lead us beyond low Earth orbit.” 
      When she is not watching over orbital debris, she is lacing up her running shoes. 
      “I’ve completed five half-marathons and I’m training for the 2026 Rock ‘n’ Roll half-marathon in Nashville,” she said. “Running helps me decompress—and yes, I often role-play technical briefings or prep conference talks while I’m out on a jog. Makes for interesting moments when I pass people in the neighborhood!” 
      About the Author
      Sumer Loggins

      Share
      Details
      Last Updated Jun 18, 2025 LocationJohnson Space Center Related Terms
      Science & Research Astromaterials Johnson Space Center People of Johnson Explore More
      5 min read Johnson’s Jason Foster Recognized for New Technology Reporting Record
      Article 1 week ago 3 min read NASA Engineers Simulate Lunar Lighting for Artemis III Moon Landing
      Article 6 days ago 5 min read Driven by a Dream: Farah Al Fulfulee’s Quest to Reach the Stars
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...