Members Can Post Anonymously On This Site
Interior of Vacuum Tank at the Electric Propulsion Laboratory
-
Similar Topics
-
By NASA
One half of NASA’s nearly complete Nancy Grace Roman Space Telescope just passed a lengthy test to ensure it will function properly in the space environment. This milestone keeps Roman well on track for its target launch by May 2027, with the team aiming for as early as fall 2026.
This photo shows half of the NASA’s Nancy Grace Roman observatory — the outer barrel assembly, deployable aperture cover, and test solar arrays — fully deployed in a thermal chamber at NASA’s Goddard Space Flight Center in Greenbelt, Md., for environmental testing. Credit: NASA/Sydney Rohde “This milestone tees us up to attach the flight solar array sun shield to the outer barrel assembly, and deployable aperture cover, which we’ll begin this month,” said Jack Marshall, who leads integration and testing for these elements at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then we’ll complete remaining environmental tests for the flight assembly before moving on to connect Roman’s two major assemblies and run the full observatory through testing, and then we’ll be ready to launch!”
Prior to this thermal testing, technicians integrated Roman’s deployable aperture cover, a visor-like sunshade, to the outer barrel assembly, which will house the telescope and instruments, in January, then added test solar panels in March. They moved this whole structure into the Space Environment Simulator test chamber at NASA Goddard in April.
There, it was subjected to the hot and cold temperatures it will experience in space. Next, technicians will join Roman’s flight solar panels to the outer barrel assembly and sunshade. Then the structure will undergo a suite of assessments, including a shake test to ensure it can withstand the vibrations experienced during launch.
This photo captures the installation of the test solar panels for NASA’s Nancy Grace Roman Space Telescope, which took place in March. One panel is lifted in the center of the frame on its way to being attached to the outer barrel assembly at right. The deployable aperture cover is stowed on the front of the outer barrel assembly, and the other half of the observatory — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — appears at the left of the photo.Credit: NASA/Jolearra Tshiteya Meanwhile, Roman’s other major portion — the spacecraft and integrated payload assembly, which consists of the telescope, instrument carrier, and two instruments — will undergo its own shake test, along with additional assessments. Technicians will install the lower instrument sun shade and put this half of the observatory through a thermal vacuum test in the Space Environment Simulator.
“The test verifies the instruments will remain at stable operating temperatures even while the Sun bakes one side of the observatory and the other is exposed to freezing conditions — all in a vacuum, where heat doesn’t flow as readily as it does through air,” said Jeremy Perkins, an astrophysicist serving as Roman’s observatory integration and test scientist at NASA Goddard. Keeping the instrument temperatures stable ensures their readings will be precise and reliable.
Technicians are on track to connect Roman’s two major parts in November, resulting in a complete observatory by the end of the year. Following final tests, Roman is expected to ship to the launch site at NASA’s Kennedy Space Center in Florida for launch preparations in summer 2026. Roman remains on schedule for launch by May 2027, with the team aiming for launch as early as fall 2026.
This infographic shows the two major subsystems that make up NASA’s Nancy Grace Roman Space Telescope. The subsystems are each undergoing testing prior to being joined together this fall.Credit: NASA’s Goddard Space Flight Center To virtually tour an interactive version of the telescope, visit:
https://roman.gsfc.nasa.gov/interactive
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory in Southern California; Caltech/IPAC in Pasadena, California; the Space Telescope Science Institute in Baltimore; and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center
301-286-1940
Share
Details
Last Updated May 07, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center Technology Explore More
6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
Article 2 weeks ago 6 min read Team Preps to Study Dark Energy via Exploding Stars With NASA’s Roman
Article 2 months ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 10 months ago View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Underwood.pdf
Thomas Underwood
University of Texas, Austin
This project will demonstrate a fusion propulsion system based on z-pinch which is a method of compressing plasma by running electrical current though it. The z-pinch will compress and heat the plasma to produce fusion reactions, and the system will be paired with an electromagnetic accelerator to produce thrust from these reactions. The effort intends to design, build, and test a prototype device and use computational modeling to evaluate the potential performance of larger systems which would be suitable for powering deep-space missions.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Oguri.pdf
Kenshiro Oguri
Purdue University
This project will investigate one of the key fundamental challenges associated with directed-energy light-sailing technology, similar to solar sails but powered by a laser beam pointed at the sail instead of by the sun. The effort will first mathematically model, then design, build, and test a prototype diffractive light sail. The three-dimensional, origami-inspired light sail could potentially unlock higher thrust, passive beam riding stability, and higher maneuverability via its ability to transform its shape.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Ilic.pdf
Ognjen Ilic
University of Minnesota
This effort will aim to demonstrate the feasibility of directed-energy propulsion through a combination of computational simulations and prototype testing. The project will model the interactions between lightsail material and a laser beam that can be pointed at the sail to propel the spacecraft. The results of the modeling will be used to fabricate an optimized sail for testing with a 30W laser. A successful demonstration would pave the way for ultrafast spaceflight within and beyond the solar system.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.