Jump to content

SERVIR/ResilienceLinks Webinar on “Floods, Drought, and Water Security: How is Water Data Critical to Climate Resilience?”


Recommended Posts

  • Publishers
Posted

On 5/22/24, Chinmay Deval, the Water Security Lead at the SERVIR Science Coordination Office, moderated a virtual panel for the ResilienceLinks monthly webinar series. ResilienceLinks is the knowledge platform for the US Agency for International Development (USAID) Center for Resilience. The theme for May focused on Water Data and Climate Resilience. The panel featured distinguished water experts from the SERVIR global network, including: Jamilatou Chaibou Begou from the Agrometeorology, Hydrology, and Meteorology Regional Center/SERVIR West Africa, Chinaporn Meechaiya from the Asian Disaster Preparedness Center/SERVIR Southeast Asia, Jim Nelson, Principal Investigator of the SERVIR Applied Sciences Team at Brigham Young University, and Angelica Gutierrez from the National Oceanic and Atmospheric Administration (NOAA) Throughout the webinar, panelists shared their expertise and insights on the use of water data to enhance climate resilience. They discussed real-world applications, challenges in data accessibility, and innovative solutions for integrating local knowledge and gender equity into climate adaptation strategies. The webinar was hosted by Peter Epanchin, Senior Climate Adaptation and Resilience Advisor at USAID’s Bureau for Resilience, Environment, and Food Security.

servir3-0-black.png?w=1040

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 min read
      NASA Data Helps Map Tiny Plankton That Feed Giant Right Whales
      This North Atlantic right whale, named “Bowtie,” was spotted feeding in southern Maine waters in January 2025. A new technique aims to use NASA satellite data to see the plankton these whales depend on from space. Credit: New England Aquarium, taken under NMFS permit # 25739 In the waters off New England, one of Earth’s rarest mammals swims slowly, mouth agape. The North Atlantic right whale filters clouds of tiny reddish zooplankton — called Calanus finmarchicus — from the sea. These zooplankton, no bigger than grains of rice, are the whale’s lifeline. Only about 370 of these massive creatures remain.
      For decades, tracking the tiny plankton meant sending research vessels out in the ocean, towing nets and counting samples by hand. Now, scientists are looking from above instead.
      Using NASA satellite data, researchers found a way to detect Calanus swarms at the ocean surface in the Gulf of Maine, picking up on the animals’ natural red pigment. This early-stage approach, described in a new study, may help researchers better estimate where the copepods gather, and where whales might follow.
      Tracking the zooplankton from space could aid both the whales and maritime industries. By predicting where these mammals are likely to feed, researchers and marine resource managers hope to reduce deadly vessel strikes and fishing gear entanglements — two major threats to the species. Knowing the feeding patterns could also help shipping and fishing industries operate more efficiently.
      Calanus finmarchicus, a tiny zooplankton powering North Atlantic food webs, fuels right whale populations with its energy-rich lipid reserves. Credit: Cameron Thompson “NASA invests in this kind of research because it connects space-based observation with real-world challenges,” said Cynthia Hall, a support scientist at NASA headquarters in Washington. She works with the Early Career Research Program, which partly funded the work. “It’s yet another a way to put NASA satellite data to work for science, communities, and ecosystems.”
      Revealing the Ocean’s Hidden Patterns
      The new approach uses data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite. The MODIS instrument doesn’t directly see the copepods themselves. Instead, it reads how the spectrum of sunlight reflected from the ocean surface changes in response to what’s in the water.
      When large numbers of the zooplankton rise to the surface, their reddish pigment — astaxanthin, the same compound that gives salmon its pink color — subtly alters how photons, or particles of light, from the sun are absorbed or scattered in the water. The fate of these photons in the ocean depends on the mix of living and non-living matter in seawater, creating a slight shift in color that MODIS can detect.
      “We didn’t know to look for Calanus before in this way,” said Catherine Mitchell, a satellite oceanographer at Bigelow Laboratory for Ocean Sciences in East Boothbay, Maine. “Remote sensing has typically focused on smaller things like phytoplankton. But recent research suggested that larger, millimeter-sized organisms like zooplankton can also influence ocean color.”
      A few years ago, researchers piloted a satellite method for detecting copepods in Norwegian waters. Now, some of those same scientists — along with Mitchell’s team — have refined the approach and applied it to the Gulf of Maine, a crucial feeding ground for right whales during their northern migration. By combining satellite data, a model, and field measurements, they produced enhanced images that revealed Calanus swarms at the sea surface, and were able to estimate numbers of the tiny animals.
      “We know the right whales are using habitats we don’t fully understand,” said Rebekah Shunmugapandi, also a satellite oceanographer at Bigelow and the study’s lead author. “This satellite-based Calanus information could eventually help identify unknown feeding grounds or better anticipate where whales might travel.”
      Tracking Elusive Giants
      Despite decades of study, North Atlantic right whales remain remarkably enigmatic to scientists. Once fairly predictable in their movements along the Eastern Seaboard of North America, these massive mammals began abandoning some traditional feeding grounds in 2010-2011. Their sudden shift to unexpected areas like the Gulf of Saint Lawrence caught people off guard, with deadly consequences.
      “We’ve had whales getting hit by ships and whales getting stuck in fishing gear,” said Laura Ganley, a research scientist in the Anderson Cabot Center for Ocean Life at the New England Aquarium in Boston, which conducts aerial and boat surveys of the whales.  
      In 2017, the National Oceanic and Atmospheric Administration designated the situation as an “unusual mortality event” in an effort to address the whales’ decline. Since then, 80 North Atlantic right whales have been killed or sustained serious injuries, according to NOAA.
      NASA satellite imagery from June 2009 was used to test a new method for detecting the copepod Calanus finmarchicus in the Gulf of Maine and estimating their numbers from space. Credit: NASA Earth Observatory image by Wanmei Liang, using data from Shunmugapandi, R., et al. (2025) In the Gulf of Maine, there’s less shipping activity, but there can be a complex patchwork of lobster fishing gear, said Sarah Leiter, a scientist with the Maine Department of Marine Resources. “Each fisherman has 800 traps or so,” Leiter explained. “If a larger number of whales shows up suddenly, like they just did in January 2025, it is challenging. Fishermen need time and good weather to adjust that gear.”
      What excites Leiter the most about the satellite data is the potential to use it in a forecasting tool to help predict where the whales could go. “That would be incredibly useful in giving us that crucial lead time,” she said.
      PACE: The Next Generation of Ocean Observer
      For now, the Calanus-tracking method has limitations. Because MODIS detects the copepods’ red pigment, not the animals themselves, that means other small, reddish organisms can be mistaken for the zooplankton. And cloud cover, rough seas, or deeper swarms all limit what satellites can spot.
      MODIS is also nearing the end of its operational life. But NASA’s next-generation PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) satellite — launched in 2024 — is poised to make dramatic improvements in the detection of zooplankton and phytoplankton.
      NASA’s Ocean Color Instrument on the PACE satellite captured these swirling green phytoplankton blooms in the Gulf of Maine in April 2024. Such blooms fuel zooplankton like Calanus finmarchicus. Credit: NASA “The PACE satellite will definitely be able to do this, and maybe even something better,” said Bridget Seegers, an oceanographer and mission scientist with the PACE team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The PACE mission includes the Ocean Color Instrument, which detects more than 280 wavelengths of light. That’s a big jump from the 10 wavelengths seen by MODIS. More wavelengths mean finer detail and better insights into ocean color and the type of plankton that the satellite can spot.
      Local knowledge of seasonal plankton patterns will still be essential to interpret the data correctly. But the goal isn’t perfect detection, the scientists say, but rather to provide another tool to inform decision-making, especially when time or resources are limited.
      By Emily DeMarco
      NASA Headquarters
      Share








      Details
      Last Updated May 05, 2025 Editor Emily DeMarco Related Terms
      Earth Moderate Resolution Imaging Spectroradiometer (MODIS) Oceans PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Explore More
      3 min read NASA Tracks Snowmelt to Improve Water Management
      As part of a science mission tracking one of Earth’s most precious resources – water…


      Article


      2 weeks ago
      5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes,…


      Article


      2 weeks ago
      3 min read Celebrating Earth as Only NASA Can
      Lee esta historia en español aquí. From the iconic image of Earthrise taken by Apollo 8…


      Article


      2 weeks ago
      View the full article
    • By NASA
      This artist’s concept depicts a magnetar – a type of neutron star with a strong magnetic field – losing material into space. Shown as thin green lines, the magnetic field lines influence the movement of charged material around the magnetar. NASA/JPL-Caltech Since the big bang, the early universe had hydrogen, helium, and a scant amount of lithium. Later, some heavier elements, including iron, were forged in stars. But one of the biggest mysteries in astrophysics is: How did the first elements heavier than iron, such as gold, get created and distributed throughout the universe?
      “It’s a pretty fundamental question in terms of the origin of complex matter in the universe,” said Anirudh Patel, a doctoral student at Columbia University in New York. “It’s a fun puzzle that hasn’t actually been solved.”
      Patel led a study using 20-year-old archival data from NASA and ESA telescopes that finds evidence for a surprising source of a large amount of these heavy elements: flares from highly magnetized neutron stars, called magnetars. The study is published in The Astrophysical Journal Letters.
      Study authors estimate that magnetar giant flares could contribute up to 10% of the total abundance of elements heavier than iron in the galaxy. Since magnetars existed relatively early in the history of the universe, the first gold could have been made this way.
      “It’s answering one of the questions of the century and solving a mystery using archival data that had been nearly forgotten,” said Eric Burns, study co-author and astrophysicist at Louisiana State University in Baton Rouge.
      How could gold be made at a magnetar?
      Neutron stars are the collapsed cores of stars that have exploded. They are so dense that one teaspoon of neutron star material, on Earth, would weigh as much as a billion tons. A magnetar is a neutron star with an extremely powerful magnetic field.
      On rare occasions, magnetars release an enormous amount of high-energy radiation when they undergo “starquakes,” which, like earthquakes, fracture the neutron star’s crust. Starquakes may also be associated with powerful bursts of radiation called magnetar giant flares, which can even affect Earth’s atmosphere. Only three magnetar giant flares have been observed in the Milky Way and the nearby Large Magellanic Cloud, and seven outside.
      Patel and colleagues, including his advisor Brian Metzger, professor at Columbia University and senior research scientist at the Flatiron Institute in New York, have been thinking about how radiation from giant flares could correspond to heavy elements forming there. This would happen through a “rapid process” of neutrons forging lighter atomic nuclei into heavier ones.   
      Protons define the element’s identity on the periodic table: hydrogen has one proton, helium has two, lithium has three, and so on. Atoms also have neutrons which do not affect identity, but do add mass. Sometimes when an atom captures an extra neutron the atom becomes unstable and a nuclear decay process happens that converts a neutron into a proton, moving the atom forward on the periodic table. This is how, for example, a gold atom could take on an extra neutron and then transform into mercury. 
      In the unique environment of a disrupted neutron star, in which the density of neutrons is extremely high, something even stranger happens: single atoms can rapidly capture so many neutrons that they undergo multiple decays, leading to the creation of a much heavier element like uranium.
      When astronomers observed the collision of two neutron stars in 2017 using NASA telescopes and the Laser Interferomete Gravitational wave Observatory (LIGO), and numerous telescopes on the ground and in space that followed up the initial discovery, they confirmed that this event could have created gold, platinum, and other heavy elements. But neutron star mergers happen too late in the universe’s history to explain the earliest gold and other heavy elements. Recent research by co-authors of the new study — Jakub Cehula of Charles University in Prague, Todd Thompson of The Ohio State University, and Metzger — has found that magnetar flares can heat and eject neutron star crustal material at high speeds, making them a potential source.
      A rupture in the crust of a highly magnetized neutron star, shown here in an artist’s rendering, can trigger high-energy eruptions. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger New clues in old data
      At first, Metzger and colleagues thought that the signature from the creation and distribution of heavy elements at a magnetar would appear in the visible and ultraviolet light, and published their predictions. But Burns in Louisiana wondered if there could be a gamma-ray signal bright enough to be detected, too. He asked Metzger and Patel to check, and they found that there could be such a signature.
      “At some point, we said, ‘OK, we should ask the observers if they had seen any,’” Metzger said.
      Burns looked up the gamma ray data from the last giant flare that has been observed, which was in December 2004. He realized that while scientists had explained the beginning of the outburst, they had also identified a smaller signal from the magnetar, in data from ESA (European Space Agency)’s INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), a recently retired mission with NASA contributions. “It was noted at the time, but nobody had any conception of what it could be,” Burns said.
      Metzger remembers that Burns thought he and Patel were “pulling his leg” because the prediction from their team’s model so closely matched the mystery signal in the 2004 data. In other words, the gamma ray signal detected over 20 years ago corresponded to what it should look like when heavy elements are created and then distributed in a magnetar giant flare.
      Patel was so excited, “I wasn’t thinking about anything else for the next week or two. It was the only thing on my mind,” he said.
      Researchers supported their conclusion using data from two NASA heliophysics missions: the retired RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and the ongoing NASA’s Wind satellite, which had also observed the magnetar giant flare. Other collaborators on the new study included Jared Goldberg at the Flatiron Institute.
      Next steps in the magnetar gold rush
      NASA’s forthcoming COSI (Compton Spectrometer and Imager) mission can follow up on these results. A wide-field gamma ray telescope, COSI is expected to launch in 2027 and will study energetic phenomena in the cosmos, such as magnetar giant flares. COSI will be able to identify individual elements created in these events, providing a new advancement in understanding the origin of the elements. It is one of many telescopes that can work together to look for “transient” changes across the universe.
      Researchers will also follow up on other archival data to see if other secrets are hiding in observations of other magnetar giant flares.
      “It very cool to think about how some of the stuff in my phone or my laptop was forged in this extreme explosion of the course of our galaxy’s history,” Patel said.
      Media Contact
      Elizabeth Landau
      Headquarters, Washington
      202-358-0845
      elandau@nasa.gov
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The C-20A aircraft, based at NASA’s Armstrong Flight Research Center in Edwards, California, flies over the Sierra Nevada Mountains in California for the Dense UAVSAR Snow Time (DUST) mission on Feb. 28, 2025. The DUST mission collected airborne data about snow water to help improve water management and reservoir systems on the ground.NASA/Starr Ginn As part of a science mission tracking one of Earth’s most precious resources – water – NASA’s C-20A aircraft conducted a series of seven research flights in March that can help researchers track the process and timeline as snow melts and transforms into a freshwater resource. The agency’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) installed on the aircraft collected measurements of seasonal snow cover and estimate the freshwater contained in it.
      “Seasonal snow is a critical resource for drinking water, power generation, supporting multi-billion dollar agricultural and recreation industries,” said Starr Ginn, C-20A project manager at NASA’s Armstrong Flight Research Center in Edwards, California.  “Consequently, understanding the distribution of seasonal snow storage and subsequent runoff is essential.”
      The Dense UAVSAR Snow Time (DUST) mission mapped snow accumulation over the Sierra Nevada mountains in California and the Rocky Mountains in Idaho. Mission scientists can use these observations to estimate the amount of water stored in that snow.
      Peter Wu, radar operator from NASA’s Jet Propulsion Laboratory in Southern California, observes data collected during the Dense UAVSAR Snow Time (DUST) mission onboard NASA’s C-20A aircraft on Feb. 28, 2025. The C-20A flew from NASA’s Armstrong Flight Research Center in Edwards, California, over the Sierra Nevada Mountains to collect data about snow water.NASA/Starr Ginn “Until recently, defining the best method for accurately measuring snow water equivalent (SWE) – or how much and when fresh water is converted from snow – has been a challenge,” said Shadi Oveisgharan, principal investigator of DUST and scientist at NASA’s Jet Propulsion Laboratory in Southern California. “The UAVSAR has been shown to be a good instrument to retrieve SWE data.”
      Recent research has shown that snow properties, weather patterns, and seasonal conditions in the American West have been shifting in recent decades. These changes have fundamentally altered previous expectations about snowpack monitoring and forecasts of snow runoff. The DUST mission aims to better track and understand those changes to develop more accurate estimates of snow-to-water conversions and their timelines.
      “We are trying to find the optimum window during which to retrieve snow data,” Oveisgharan said. “This estimation will help us better estimate available fresh snow and manage our reservoirs better.”
      The Dense UAVSAR Snow Time (DUST) mission team assembles next to the C-20A aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, on Feb. 28, 2025. From left, radar operator Adam Vaccaro, avionics lead Kelly Jellison, C-20A project manager Starr Ginn, pilot Carrie Worth, pilot Troy Asher, aircraft mechanic Eric Apikian, and operations engineer Ian Elkin.NASA/Starr Ginn The DUST mission achieved a new level of snow data accuracy, which is partly due to the specialized flight paths flown by the C-20A. The aircraft’s Platform Precision Autopilot (PPA) enables the team to fly very specific routes at exact altitudes, speeds, and angles so the UAVSAR can more precisely measure terrain changes.
      “Imagine the rows made on grass by a lawn mower,” said Joe Piotrowski Jr., operations engineer for NASA Armstrong’s airborne science program. “The PPA system enables the C-20A to make those paths while measuring terrain changes down to the diameter of a centimeter.”
      Share
      Details
      Last Updated Apr 24, 2025 EditorDede DiniusContactErica HeimLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Airborne Science C-20A Earth Science Earth's Atmosphere Jet Propulsion Laboratory Science Mission Directorate Explore More
      6 min read NASA Tests Key Spacesuit Parts Inside This Icy Chamber
      Article 5 hours ago 2 min read 2025 EGU Hyperwall Schedule
      EGU General Assembly, April 27 – May 2, 2025 Join NASA in the Exhibit Hall…
      Article 7 hours ago 5 min read NASA Airborne Sensor’s Wildfire Data Helps Firefighters Take Action
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s AVIRIS-3 airborne imaging spectrometer was used to map a wildfire near Cas-tleberry, Alabama, on March 19. Within minutes, the image was transmitted to firefighters on the ground, who used it to contain the blaze. NASA/JPL-Caltech, NASA Earth Observatory The map visualizes three wavelengths of infrared light, which are invisible to the human eye. Orange and red areas show cooler-burning areas, while yellow indicates the most intense flames. Burned areas show up as dark red or brown.NASA/JPL-Caltech, NASA Earth Observatory Data from the AVIRIS-3 sensor was recently used to create detailed fire maps in minutes, enabling firefighters in Alabama to limit the spread of wildfires and save buildings.
      A NASA sensor recently brought a new approach to battling wildfire, providing real-time data that helped firefighters in the field contain a blaze in Alabama. Called AVIRIS-3, which is short for Airborne Visible Infrared Imaging Spectrometer 3, the instrument detected a 120-acre fire on March 19 that had not yet been reported to officials.
      As AVIRIS-3 flew aboard a King Air B200 research plane over the fire about 3 miles (5 kilometers) east of Castleberry, Alabama, a scientist on the plane analyzed the data in real time and identified where the blaze was burning most intensely. The information was then sent via satellite internet to fire officials and researchers on the ground, who distributed images showing the fire’s perimeter to firefighters’ phones in the field.
      All told, the process from detection during the flyover to alert on handheld devices took a few minutes. In addition to pinpointing the location and extent of the fire, the data showed firefighters its perimeter, helping them gauge whether it was likely to spread and decide where to add personnel and equipment.
      As firefighters worked to prevent a wildfire near Perdido, Alabama, from reaching nearby buildings, they saw in an infrared fire map from NASA’s AVIRIS-3 sensor that showed the fire’s hot spot was inside its perimeter. With that intelligence, they shifted some resources to fires in nearby Mount Vernon.NASA/JPL-Caltech, NASA Earth Observatory “This is very agile science,” said Robert Green, the AVIRIS program’s principal investigator and a senior research scientist at NASA’s Jet Propulsion Laboratory in Southern California, noting AVIRIS-3 mapped the burn scar left near JPL by the Eaton Fire in January.
      Observing the ground from about 9,000 feet (3,000 meters) in altitude, AVIRIS-3 flew aboard several test flights over Alabama, Mississippi, Florida, and Texas for a NASA 2025 FireSense Airborne Campaign. Researchers flew in the second half of March to prepare for prescribed burn experiments that took place in the Geneva State Forest in Alabama on March 28 and at Fort Stewart-Hunter Army Airfield in Georgia from April 14 to 20. During the March span, the AVIRIS-3 team mapped at least 13 wildfires and prescribed burns, as well as dozens of small hot spots (places where heat is especially intense) — all in real time.
      At one of the Mount Vernon, Alabama, fires, firefighters used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings.NASA/JPL-Caltech, NASA Earth Observatory Data from imaging spectrometers like AVIRIS-3 typically takes days or weeks to be processed into highly detailed, multilayer image products used for research. By simplifying the calibration algorithms, researchers were able to process data on a computer aboard the plane in a fraction of the time it otherwise would have taken. Airborne satellite internet connectivity enabled the images to be distributed almost immediately, while the plane was still in flight, rather than after it landed.
      The AVIRIS team generated its first real-time products during a February campaign covering parts of Panama and Costa Rica, and they have continued to improve the process, automating the mapping steps aboard the plane.
      ‘Fan Favorite’
      The AVIRIS-3 sensor belongs to a line of imaging spectrometers built at JPL since 1986. The instruments have been used to study a wide range of phenomena — including fire — by measuring sunlight reflecting from the planet’s surface.
      During the March flights, researchers created three types of maps. One, called the Fire Quicklook, combines brightness measurements at three wavelengths of infrared light, which is invisible to the human eye, to identify the relative intensity of burning. Orange and red areas on the Fire Quicklook map show cooler-burning areas, while yellow indicates the most intense flames. Previously burned areas show up as dark red or brown.
      Another map type, the Fire 2400 nm Quicklook, looks solely at infrared light at a wavelength of 2,400 nanometers. The images are particularly useful for seeing hot spots and the perimeters of fires, which show brightly against a red background.
      A third type of map, called just Quicklook, shows burned areas and smoke.
      The Fire 2400 nm Quicklook was the “fan favorite” among the fire crews, said Ethan Barrett, fire analyst for the Forest Protection Division of the Alabama Forestry Commission. Seeing the outline of a wildfire from above helped Alabama Forestry Commission firefighters determine where to send bulldozers to stop the spread. 
      Additionally, FireSense personnel analyzed the AVIRIS-3 imagery to create digitized perimeters of the fires. This provided firefighters fast, comprehensive intelligence of the situation on the ground.
      That’s what happened with the Castleberry Fire. Having a clear picture of where it was burning most intensely enabled firefighters to focus on where they could make a difference — on the northeastern edge. 
      Then, two days after identifying Castleberry Fire hot spots, the sensor spotted a fire about 4 miles (2.5 kilometers) southwest of Perdido, Alabama. As forestry officials worked to prevent flames from reaching six nearby buildings, they noticed that the fire’s main hot spot was inside the perimeter and contained. With that intelligence, they decided to shift some resources to fires 25 miles (40 kilometers) away near Mount Vernon, Alabama.
      To combat one of the Mount Vernon fires, crews used AVIRIS-3 maps to determine where to establish fire breaks beyond the northwestern end of the fire. They ultimately cut the blaze off within about 100 feet (30 meters) of four buildings. 
      “Fire moves a lot faster than a bulldozer, so we have to try to get around it before it overtakes us. These maps show us the hot spots,” Barrett said. “When I get out of the truck, I can say, ‘OK, here’s the perimeter.’ That puts me light-years ahead.”
      AVIRIS and the Firesense Airborne Campaign are part of NASA’s work to leverage its expertise to combat wildfires using solutions including airborne technologies. The agency also recently demonstrated a prototype from its Advanced Capabilities for Emergency Response Operations project that will provide reliable airspace management for drones and other aircraft operating in the air above wildfires.
      NASA Helps Spot Wine Grape Disease From Skies Above California News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-058
      Share
      Details
      Last Updated Apr 23, 2025 Related Terms
      Earth Science Airborne Science Earth Earth Science Division Electromagnetic Spectrum Wildfires Explore More
      4 min read Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data
      NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to invite small business start-ups…
      Article 1 day ago 3 min read Celebrating Earth as Only NASA Can
      Article 2 days ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      First Results from the Eclipse Soundscapes Project: Webinar on May 7
      How do the sudden darkness and temperature changes of a solar eclipse impact life on Earth? The Eclipse Soundscapes project invited you to document changes in the environment during the week of the April 8, 2024 total solar eclipse, using your own senses or an audiomoth sound recorder. 
      Thanks to your participation, the Eclipse Soundscapes team collected 25 terabytes of audio data during the 2023 and 2024 solar eclipses. “It was really empowering for me to participate in a scientific research study with my son beside me so he could see how scientific data can be (collected),” said one Eclipse Soundscapes volunteer.
      More than 500 volunteers  collected data using AudioMoth recorders during the April 8, 2024 eclipse for the Eclipse Soundscapes project. Credit: Eclipse Soundscapes Since the eclipse, the Eclipse Soundscapes team has been turning the submitted data into a new, carefully validated data set. They have been assessing recording quality, verifying timestamps, and logging other kinds of information that support the submitted data. With the newly validated data, they are now using machine learning to study wildlife behavior and compare regional differences. They do some of this work using spectrographic analysis—spreading out the sound into different frequency ranges like a prism spreads light into a rainbow. The team is also working to make the validated data freely available to the public on the Zenodo website—a free, open-source research data repository developed by CERN (the European Organization for Nuclear Research) that allows researchers to share and preserve their work, regardless of discipline or format. 
      The team’s first inspection of the data suggests that some species may mimic dusk-like behavior during totality. Want to hear more early results? You can join the team’s live webinar on May 7, 2025, at 2:00 p.m. EST with Dr. Brent Pease. Register now at EclipseSoundscapes.org. You can also explore this interactive map of data analysis sites, with details about each site, including partner organizations.

      Register for the May 7 Preliminary Results WEBINAR


      Read the Preliminary Results Blog

      Share








      Details
      Last Updated Apr 22, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 


      Article


      1 week ago
      7 min read Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 


      Article


      2 weeks ago
      1 min read Join our Virtual Do NASA Science LIVE Event on April 10!


      Article


      3 weeks ago
      View the full article
  • Check out these Videos

×
×
  • Create New...