Jump to content

SERVIR Science Coordination Office (SCO) and Bhutan’s Implementing Partners Launch Farm Action Toolkit Service


Recommended Posts

  • Publishers
Posted

On 5/13/24, in alignment with the NASA Interagency Agreement with the US Department of State Advancing Science, Technology, Engineering, and Math in Bhutan through Increased Earth Observation Capacity, Aparna R. Phalke, Sarah Cox and Tony Kim (ST11) traveled to Thimphu, Bhutan, to represent the SERVIR SCO at the official launch on 5/17/24 of the “Farm Action Toolkit” service (https://crops.servirglobal.net/dashboard/) with the implementing partners from Bhutan Druk Holdings and Investments (DHI) Super Fablab, National Statistical Bureau (NSB), Department of Agriculture, National Center of Organic Agriculture, National Land Commission and GovTech Bhutan. The service was presented with meaningful opening remarks from Manish Rai (DHI), Andrea Goodman (U.S. Department of State), Sangay Dorji (Retired Head of the Environmental Office, Ministry of Economic Affairs) and Tony Kim . Also in attendance were Bhutan Foundation officials in addition to implementing partners. The “Farm Action Toolkit” co-developed by SERVIR and Bhutan’s implementing partners to support their mission on self-sufficiency for food and save operational costs. This service provides field-scale (30-m) crop area and yields related products and algorithms including 2002 to 2023 crop/non crop maps, rice area maps, maize area maps and rice yield estimations.

Following the launch of the Farm Action Toolkit service in Thimphu, Bhutan, a SERVIR SCO service team led by Aparna Phalke and Bhutan’s implementing partner team from DHI performed field surveys of agricultural fields across the Thimphu, Punakha and Paro area of Bhutan using GPS, and Helmet data collection with GoPro cameras and drones (5/23-25/24). The Helmet data collection with GoPro cameras tool method was replicated from SERVIR’s Applied Science Team PI Catherine Nakalemb’s project in SERVIR-West Africa. The team also interviewed individual farmers from areas covering rice cultivation with pest, disease and water related issues. The implementing partner and SERVIR SCO team also collected market analysis data consisting of fifty plus vendors and vendors cum farmers interviews on agricultural commodities and the supply chain (5/18-19/24). These field surveys will play a significant role in the operation and adoption of the Farm Action Toolkit service by implementing partners

In-person outreach events were conducted at the Royal Thimphu College and College of Natural Resources, Royal University of Bhutan (RUB) on 5/14/24 and 5/24/24, respectively. Over 100 students from each academic institution participated in the outreach events, which focused on NASA milestones and how to leverage Earth observations to address immediate environmental issues in Bhutan.

These activities are part of a NASA Interagency Agreement with the US Department of State – Advancing Science, Technology, Engineering, and Math in Bhutan through Increased Earth Observation Capacity – a collaboration that also includes NASA’s DEVELOP, ARSET, and GLOBE programs.

farm-action-toolkit.png?w=2048

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Technicians completed integrating NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow-On Lagrange 1 (SWFO-L1) satellite to an Evolved Expendable Launch Vehicle Secondary Payload Adapter ring at the Astrotech Space Operations Facility near NASA’s Kennedy Space Center in Florida on Sept. 4.
      Integrating the rideshares to the ring precedes the next prelaunch launch milestone: attaching NASA’s IMAP (Interstellar Mapping and Acceleration Probe) heliosphere mapping observatory to a payload adapter that connects to the ring. This configuration allows all three spacecraft to launch atop a single SpaceX Falcon 9 rocket, maximizing efficiency by sharing the ride to space.
      The Carruthers observatory will capture light from Earth’s geocorona, the part of the outer atmosphere that emits ultraviolet light. The observations will advance our understanding of space weather, planetary atmospheric evolution, and the long-term history of water on Earth.
      The SWFO-L1 satellite will keep a watchful eye on the Sun and the near-Earth environment for space weather activity. It is the first NOAA satellite designed specifically for and fully dedicated to continuous space weather observations. It will serve as an early warning beacon for destructive space weather events that could impact our technological dependent infrastructure and industries.
      The spacecraft will launch together aboard a SpaceX Falcon 9 rocket no earlier than 7:32 a.m. EDT on Tuesday, Sept. 23, from Launch Complex 39A at NASA Kennedy.
      Image credit: NASA/Frank Michaux
      View the full article
    • By NASA
      NASA Science News Conference on Three New Space Weather Missions (Sept. 21, 2025)
    • By NASA
      NASA/Jonny Kim NASA astronaut Zena Cardman processes bone cell samples inside the Kibo laboratory module’s Life Science Glovebox on Aug. 28, 2025, as part of an experiment that tests how microgravity affects bone-forming and bone-degrading cells and explore potential ways to prevent bone loss. This research could help protect astronauts on future long-duration missions to the Moon and Mars, while also advancing treatments for millions of people on Earth who suffer from osteoporosis.
      Image credit: NASA/Jonny Kim
      View the full article
    • By NASA
      NASA researchers Matt Gregory, right, Arwa Awiess, center, and Andrew Guion, left, discuss live flight data being ingested at the Mission Visualization and Research Control Center (MVRCC) at NASA’s Ames Research Center in California’s Silicon Valley on Aug. 21, 2025.NASA/ Brandon Torres-Navarrete NASA and its partners recently tested a tool for remotely piloted operations that could enable operators to transport people and goods more efficiently within urban areas.  
      The team’s goal is to ensure that when these remotely piloted aircraft – including electric vertical takeoff and landing vehicles (eVTOLs) – take to the skies, air traffic controllers won’t be overburdened by increased flight operations and safety is maintained across the national airspace. 
      On Aug. 21, NASA’s Air Traffic Management eXploration Project (ATM-X) assisted Wisk Aero when they flew a Bell 206 helicopter in Hollister, California. The purpose of the flight test was to evaluate and fine-tune a ground-based radar developed by Collins Aerospace. The radar, which provides aircraft location data, could be used during future remotely piloted operations to detect and avoid other aircraft in the vicinity.  NASA, Wisk, and Collins researchers also used the flight to test data exchange capabilities across different geographic locations between the groups, a critical capability for future remotely piloted operators in a shared airspace. This work builds on a November 2024 flight test NASA performed with Reliable Robotics and Collins Aerospace.  
      Initial analysis of the August testing of Collins’ ground-based radar actively and accurately surveilled the airspace during the aircraft’s flight test. The Collins radar system also successfully transmitted these data to NASA’s Mission Visualization Research Command Center lab at NASA’s Ames Research Center in California’s Silicon Valley. NASA, Wisk, and Collins will further analyze the flight data to better understand the radar’s performance and data exchange capabilities for future remotely piloted flight tests. This testing is a part of ATM-X’s remotely piloted testing campaign, designed to identify the infrastructure and technologies needed for the Federal Aviation Administration to safely integrate drones and air taxis into the airspace, bringing the movement of people and goods off the ground, and into the sky.   
      Remotely piloted eVTOL aircraft could bridge the gap for urban communities by offering a more affordable and accessible method of transportation and delivery services in congested, highly-populated areas. 
      NASA and Wisk will continue to collaborate on emerging eVTOL technologies to safely integrate advanced aircraft, into the national airspace. Together, the teams will gather data on eVTOL performance and characteristics during a flight test of a helicopter, which will act as a “surrogate” simulating an eVTOL flight. This work will mark another critical step towards better connecting communities across the globe.
      View the full article
    • By NASA
      Three New Missions Launch to Track Space Weather
  • Check out these Videos

×
×
  • Create New...