Jump to content

NASA Stennis Flashback: Shuttle Team Achieves Unprecedented Milestone


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

As chief of test operations at NASA’s Stennis Space Center, Maury Vander has been involved in some long-duration propulsion hot fires – but he still struggles to describe a pair of 34-minute space shuttle main engine tests conducted onsite in August 1988.

“When you stop and think about it, …” Vander begins, then pauses. “In 34 minutes, I can leave work and drive home to Slidell (15-20 miles west in Louisiana) and be relaxing in my recliner in that amount of time.”

Vander’s struggle is understandable when one considers the numbers. On Aug. 3 and Aug. 15, operators at the Thad Cochran Test Stand (B-1) at NASA Stennis near Bay St. Louis, Mississippi, fired a space shuttle main engine for a total of 2,017 seconds each day, more than four times as long as the engine fired (500 seconds) during a typical space shuttle launch.

In terms of propulsion firings, nothing else comes close. The next-longest duration appears to have occurred in 2001, when a Progress M1-5 engine was fired for about 22 minutes to help deorbit the Russian space station Mir.

Vander still wonders at the south Mississippi feat. “The ability to juggle the type of challenges seen over the course of 30-plus minutes is amazing,” he said. “And you are not talking about 21st century technology either. You are talking about rather simplistic stuff not far removed from the 1960s, so there was an art to operating that type of equipment. But, they pulled it off.”

NASA Stennis may have been the only place such a firing could have been conducted.

It had the needed test facility. The Thad Cochran (B-1) stand featured a larger liquid oxygen tank to support the test and was equipped with a diffuser that allowed operators to throttle the engine to lower power levels, thus conserving fuel. The stand also had a larger dock area for additional propellant barges needed for test support.

Each 34-minute test required about 600,000 gallons of liquid hydrogen and 230,000 gallons of liquid oxygen. Careful coordination ensured proper propellant flow from barges. “We still had old pumps for the barges, as opposed to the new ones that have variable drives to help control flow,” Vander noted. “The pumps back then were basically on/off pumps. If they were running, they were pretty much running wide open. That posed a challenge for controlling flow. It was a real art to orchestrate everything for such a long period of time.”

In addition, the NASA Stennis High Pressure Gas Facility had to ensure proper volume and flow of gases to support the tests. Teams at the High Pressure Water Facility had to manage uninterrupted flow from the 66-million gallon reservoir to the test stand. “All of these were challenges they had to think their way through and logistically make happen,” Vander said.

The test team had to maintain constant vigilance of such operations. “You are always monitoring, trying to figure out what could go wrong,” Vander said. “At any given moment, you may have to react and deal with a problem. To think of those people sitting in front of computer screens, gauges, and such, watching and making sure their responsibilities were covered for 30-plus minutes, is just amazing.”

The teams were driven by a compelling factor. The nation was just recovering from the Challenger tragedy of 1986. Space shuttle Discovery would launch NASA’s return to flight in late September. Space shuttle Atlantis was scheduled to launch later in the year, but there was an issue with the fuel preburner injector on one of the engines. To resolve the matter, operators needed to record 8,000 seconds of hot fire on the injector. They decided to compile the time as efficiently as possible.

Engineers at NASA’s Stennis Space Center conduct one of two 2,017-second tests of a space shuttle main engine on the Thad Cochran Test Stand (B-1) in August 1988. The tests still stand as the longest duration propulsion hot fires at the center and perhaps anywhere. The tests – almost 34 minutes each – were more than four times longer than space shuttle main engines fired during an actual launch.
NASA/Stennis

By the conclusion of the Aug. 15 test, just 340 more seconds of testing was needed to resolve the injector issue. As it did throughout the shuttle program, NASA Stennis teams delivered on propulsion test needs, resolving the issue to clear Atlantis for launch in early December.

From 1975 to 2009, the center tested every space shuttle main flight engine and all engine upgrades, and also helped troubleshoot various performance issues. NASA Stennis now tests the RS-25 engines produced by Aerojet Rocketdyne, an L3Harris Technologies company, to support launches of NASA’s SLS (Space Launch System) rocket on Artemis missions to the Moon and beyond.

“The people were proud of the work they did, yet humble,” Vander said, looking back at the record of the shuttle era. “You had to pull some of the stuff they did out of them when you were talking with them. Once they opened up, though, there were all kind of lessons there that we are still building on today.”

For information about NASA’s Stennis Space Center, visit:

Stennis Space Center – NASA

Share

Details

Last Updated
Aug 05, 2024
Editor
NASA Stennis Communications
Contact
C. Lacy Thompson
Location
Stennis Space Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX Media accreditation is open for the launch of NASA’s 11th rotational mission of a SpaceX Falcon 9 rocket and Dragon spacecraft carrying astronauts to the International Space Station for a science expedition. NASA’s SpaceX Crew-11 mission is targeted to launch in the late July/early August timeframe from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      The mission includes NASA astronauts Zena Cardman, serving as commander; Mike Fincke, pilot; JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, mission specialist; and Roscosmos cosmonaut Oleg Platonov, mission specialist. This is the first spaceflight for Cardman and Platonov, the fourth trip for Fincke, and the second for Yui, to the orbiting laboratory.
      Media accreditation deadlines for the Crew-11 launch as part of NASA’s Commercial Crew Program are as follows:
      International media without U.S. citizenship must apply by 11:59 p.m. EDT on Sunday, July 6. U.S. media and U.S. citizens representing international media organizations must apply by 11:59 p.m. on Monday, July 14. All accreditation requests must be submitted online at:
      https://media.ksc.nasa.gov
      NASA’s media accreditation policy is online. For questions about accreditation or special logistical requests, email: ksc-media-accreditat@mail.nasa.gov. Requests for space for satellite trucks, tents, or electrical connections are due by Monday, July 14.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425, o Messod Bendayan: 256-930-1371.
      For launch coverage and more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Steve Siceloff / Stephanie Plucinsky
      Kennedy Space Center, Florida
      321-867-2468
      steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov
      Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 01, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Commercial Crew Commercial Space Humans in Space International Space Station (ISS) ISS Research Space Operations Mission Directorate View the full article
    • By NASA
      NASA NASA astronaut Raja Chari and Dr. V. Narayanan, chairman of ISRO (Indian Space Research Organisation), interact outside the Orion spacecraft mockup at NASA’s Johnson Space Center in Houston. Narayanan and Indian officials visited NASA Johnson and NASA’s Kennedy Space Center in Florida, ahead of the Axiom Mission 4 launch to the International Space Station.

      As part of a collaboration between NASA and ISRO, Axiom Mission 4 delivers on a commitment highlighted by President Trump and Indian Prime Minister Narendra Modi to send the first ISRO astronaut to the station. The space agencies are participating in five joint science investigations and two in-orbit science, technology, engineering, and mathematics demonstrations. NASA and ISRO have a long-standing relationship built on a shared vision to advance scientific knowledge and expand space collaboration.
      Keep Exploring Discover More Topics From NASA
      Low Earth Orbit Economy
      Humans In Space
      Commercial Space
      Private Astronaut Missions
      View the full article
    • By USH
      In 1992, Dr. Gregory Rogers a NASA flight surgeon and former Chief of Aerospace Medicine witnessed an event that would stay with him for more than three decades. Now, after years of silence, he’s finally revealing the details of a 15-minute encounter that shattered everything he thought he knew about aerospace technology. 

      With a distinguished career that includes support for 31 space shuttle launches, training as an F-16 pilot, and deep involvement in classified aerospace programs, Dr. Rogers brings unmatched credibility to the conversation. His firsthand account of observing what appeared to be a reverse-engineered craft, emblazoned with "U.S. Air Force" markings, raises profound questions about the true timeline of UAP development and disclosure. 
      The full interview spans nearly two hours. To help navigate the discussion, here’s a timeline so you can jump to the segments that interest you most. 
      00:00 Introduction and Dr. Rogers' Unprecedented Credentials 07:25 The 1992 Cape Canaveral Encounter Begins 18:45 Inside the Hangar: First Glimpse of the Craft 26:30 "We Got It From Them" - The Shocking Revelation 35:15 Technical Analysis: Impossible Flight Characteristics 43:40 Electromagnetic Discharges and Advanced Propulsion 52:20 The Cover Story and 33 Years of Silence 1:01:10 Why He's Speaking Out Now: Grush and Fravor's Influence 1:08:45 Bob Lazar Connections and Reverse Engineering Timeline 1:17:20 Flight Surgeon Stories: The Human Side of Classified Work 1:25:50 G-Force Brain Injuries: An Unreported Military Crisis 1:34:30 Columbia Disaster: When Safety Warnings Are Ignored 1:43:15 The Bureaucratic Resistance to Truth 1:50:40 Congressional Testimony and The Path Forward 1:58:25 Final Thoughts: Legacy vs. Truth
        View the full article
    • By NASA
      NASA has awarded a task order to Florida Power and Light of Juno Beach, Florida, to provide electric distribution utility service at the agency’s Kennedy Space Center in Florida.
      This is a fixed-price task order with an estimated value of $70 million over five years. The contract consists of a two-year base period beginning July 1, 2025, followed by a two-year and a one-year option period.
      Under the contract, the awardee will provide all management, labor, transportation, facilities, materials, and equipment to provide electric distribution utility service up to and including all meters across the spaceport.
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      -end-
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
    • By NASA
      The Roscosmos Progress 90 cargo craft approaches the International Space Station for a docking to the Poisk module delivering nearly three tons of food, fuel, and supplies replenishing the Expedition 72 crew. Credit: NASA NASA will provide live coverage of the launch and docking of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies to the Expedition 73 crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 92 spacecraft is scheduled to launch at 3:32 p.m. EDT, Thursday, July 3 (12:32 a.m. Baikonur time, Friday, July 4), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 3:10 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the space-facing port of the orbiting laboratory’s Poisk module at 5:27 p.m. on Saturday, July 5. NASA’s rendezvous and docking coverage will begin at 4:45 p.m. on NASA+.
      The Progress 92 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      Ahead of the spacecraft’s arrival, the Progress 90 spacecraft will undock from the Poisk module on Tuesday, July 1. NASA will not stream undocking.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For nearly 25 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Learn more about the International Space Station, its research, and crew, at:
      https://www.nasa.gov/station
      -end-
      Jimi Russell
      Headquarters, Washington
      202-358-1100
      james.j.russell@nasa.gov  
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jun 30, 2025 LocationNASA Headquarters Related Terms
      Humans in Space International Space Station (ISS) Johnson Space Center NASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...